Lith iu m Hexa m eth yld isila zid e-Med ia ted Keton e En oliza tion : Th e
In flu en ce of Hin d er ed Dia lk yl Eth er s a n d Isostr u ctu r a l
Dia lk yla m in es on Rea ction Ra tes a n d Mech a n ism s
Pinjing Zhao, Brett L. Lucht, Sarita L. Kenkre, and David B. Collum*
Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University,
Ithaca, New York 14853-1301
Received J uly 10, 2003
Mechanistic studies of the enolization of 2-methylcyclohexanone mediated by lithium hexameth-
yldisilazide (LiHMDS; TMS
studies using in situ IR spectroscopy show that enolizations in the presence of i-Pr
tetramethyltetrahydrofuran, and cineole proceed via dimer-based transition structures [(TMS
2
NLi) solvated by hindered dialkyl ethers (ROR′) are described. Rate
2
O, 2,2,5,5-
2
-
‡
2
NLi) (ROR′)(ketone)] . Comparing the relative solvation energies and the corresponding solvent-
dependent activation energies shows that the highly substituted ethers accelerate the enolizations
by sterically destabilizing the reactants and stabilizing the transition structures. Comparisons of
hindered dialkyl ethers with their isostructural dialkylamines reveal that the considerably higher
rates elicited by the amines derive from an analogous relative destabilization of the reactants and
relative stabilization of the transition structures.
In tr od u ction
We began studying how solvation influences the reac-
tivity of LiHMDS by focusing on one of the most impor-
tant reactions in organolithium chemistry, ketone eno-
High thermal stability, reactivity, and selectivity com-
bine to make lithium hexamethyldisilazide (LiHMDS)
one of the most important Br o¨ nsted bases in organic
synthesis.1 These properties also make LiHMDS an
excellent template for investigating structure-reactivity
relationships within organolithium chemistry. Structural
studies of LiHMDS solvated by nearly 100 mono- and
1
lization. Early efforts revealed that poorly coordinating
4a,5
trialkylamines
can cause up to 3000-fold accelerations
,2
6
compared to enolizations in neat toluene (eq 1). The rates
3
bidentate ethers and amines provided key insights into
lithium ion coordination chemistry and established a firm
basis to understand solvent-dependent reactivities and
mechanisms.4
(
1) For selected examples in which LiHMDS is used on large scale,
see: (a) Parsons, R. L., J r. Curr. Opin. Drug Discovery Dev. 2000, 3,
83. (b) Kauffman, G. S.; Harris, G. D.; Dorow, R. L.; Stone, B. R. P.;
7
Parsons, R. L., J r.; Pesti, J . A.; Magnus, N. A.; Fortunak, J . M.;
Confalone, P. N.; Nugent, W. A. Org. Lett. 2000, 2, 3119. (c) Boys, M.
L.; Cain-J anicki, K. J .; Doubleday, W. W.; Farid, P. N.; Kar, M.;
Nugent, S. T.; Behling, J . R.; Pilipauskas, D. R. Org. Process Res. Dev.
increase with increasing steric demand for a considerable
range of amines but fall off sharply using the most
hindered amines. The surprising amine-dependent rates
7
1
997, 1, 233. (d) Ragan, J . A.; Murry, J . A.; Castaldi, M. J .; Conrad,
A. K.; J ones, B. P.; Li, B.; Makowski, T. W.; McDermott, R.; Sitter, B.
J .; White, T. D.; Young, G. R. Org. Process Res. Dev. 2001, 5, 498. (e)
Rico, J . G. Tetrahedron Lett. 1994, 35, 6599. (f) DeMattei, J . A.; Leanna,
M. R.; Li, W.; Nichols, P. J .; Rasmussen, M. W.; Morton, H. E. J . Org.
Chem. 2001, 66, 3330.
were traced to a dimer-based mechanism in which
destabilizing interactions in LiHMDS dimer 3 are at-
tenuated in a putative open-dimer-based transition struc-
8,9
ture 4 (Scheme 1).
(
2) For reviews of structural investigations of lithium amides, see:
a) Gregory, K.; Schleyer, P. v. R.; Snaith, R. Adv. Inorg. Chem. 1991,
7, 47. (b) Mulvey, R. E. Chem. Soc. Rev. 1991, 20, 167. (c) Beswick,
(
3
(5) For evidence that the steric hindrance of amines can make them
poor ligands for lithium, see ref 4.
M. A.; Wright, D. S. In Comprehensive Organometallic Chemistry II;
Abel, E. W., Stone, F. G. A., Wilkinson, G., Eds.; Pergamon: New York,
(6) (a) Zhao, P.; Collum, D. B. J . Am. Chem. Soc. 2003, 125, 4008.
(b) Zhao, P.; Collum, D. B. J . Am. Chem. Soc., in press.
(7) For an early suggestion that steric effects are major determinants
of solvation, see: Settle, F. A.; Haggerty, M.; Eastham, J . F. J . Am.
Chem. Soc. 1964, 86, 2076.
1
2
995; Vol. 1, Chapter 1. (d) Collum, D. B. Acc. Chem. Res. 1993, 26,
27.
(
3) Lucht, B. L.; Collum, D. B. Acc. Chem. Res. 1999, 32, 1035.
(4) For leading references to structural and mechanistic studies of
LiHMDS, see: (a) Lucht, B. L.; Collum, D. B. J . Am. Chem. Soc. 1996,
(8) (a) Remenar, J . F.; Collum, D. B. J . Am. Chem. Soc. 1997, 119,
5573. (b) Haeffner, F.; Sun, C. Z.; Williard, P. G. J . Am. Chem. Soc.
2000, 122, 12542. (c) Remenar, J . F.; Collum, D. B. J . Am. Chem. Soc.
1998, 120, 4081. (d) Remenar, J . F.; Collum, D. B. J . Am. Chem. Soc.
1998, 120, 4081.
1
1
1
1
18, 2217. (b) Romesberg, F. E.; Collum, D. B. J . Am. Chem. Soc. 1992,
14, 2112. (c) Romesberg, F. E.; Collum, D. B. J . Am. Chem. Soc. 1994,
16, 9187. (d) Romesberg, F. E.; Collum, D. B. J . Am. Chem. Soc. 1995,
17, 2166.
1
0.1021/jo030221y CCC: $27.50 © 2004 American Chemical Society
Published on Web 11/11/2003
2
42
J . Org. Chem. 2004, 69, 242-249