10.1002/anie.201709644
Angewandte Chemie International Edition
COMMUNICATION
that the data allow us to extrapolate to both zero and infinite
operating speed. At infinite exchange frequency the system
would be expected to furnish the same yield as the model
reaction at 50 °C in absence of porphyrin 4, which would mean
66% of 8. In contrast at zero sliding speed, the full inhibitory
action of the ZnPor unit should be sensed, thus a yield of 0% is
expected (0% yield was observed in the model reaction in
presence of 4 at 50 °C). Remarkably, the release of catalyst is
the more pronounced, the higher the sliding speed and the
weaker the thermodynamic binding within the slider-on-deck
systems.[35] Thus liberation has to be a kinetic phenomenon!
[6]
[7]
[8]
[9]
P. K. Biswas, S. Saha, Y. Nanaji, A. Rana, M. Schmittel, Inorg. Chem.
2017, 56, 6662-6670.
S. K. Samanta, A. Rana, M. Schmittel, Angew. Chem. Int. Ed. 2016, 55,
2267-2272.
C. Cheng, P. R. McGonigal, S. T. Schneebeli, H. Li, N. A. Vermeulen, C.
Ke, J. F. Stoddart, Nat. Nanotechnol. 2015, 10, 547-553.
M. Nishikawa, S. Kume, H. Nishihara, PCCP 2013, 15, 10549-10565.
[10] S. K. Samanta, M. Schmittel, J. Am. Chem. Soc. 2013, 135, 18794-
18797.
[11] S. Hiraoka, Y. Hisanaga, M. Shiro, M. Shionoya, Angew. Chem. Int. Ed.
2010, 49, 1669-1673.
[12] D. P. Ferris, Y.-L. Zhao, N. M. Khashab, H. A. Khatib, J. F. Stoddart, J.
I. Zink, J. Am. Chem. Soc. 2009, 131, 1686-1688.
The most likely explanation for the observed effect is a neighbor-
group participation, analogous to the proximity effect. Due to the
foot of the slider visiting all ZnPor stations on the deck, it
displaces catalyst 5 bound to the third ZnPor unit of DS1-DS3 in
an SN2-type reaction. Notoriously, ZnPor can only bind strongly
to one additional ligand.[36] This SN2-displacement increases the
[13] S. Hiraoka, E. Okuno, T. Tanaka, M. Shiro, M. Shionoya, J. Am. Chem.
Soc. 2008, 130, 9089-9098.
[14] S. V. Bhosale, C. Chong, C. Forsyth, S. J. Langford, C. P. Woodward,
Tetrahedron 2008, 64, 8394-8401.
[15] H. Kai, S. Nara, K. Kinbara, T. Aida, J. Am. Chem. Soc. 2008, 130,
6725-6727.
dissociation speed (kdiss
)
of catalyst
5
from DS1-DS3.
[16] S. Silvi, A. Arduini, A. Pochini, A. Secchi, M. Tomasulo, F. M. Raymo,
M. Baroncini, A. Credi, J. Am. Chem. Soc. 2007, 129, 13378-13379.
[17] S. Hiraoka, M. Shiro, M. Shionoya, J. Am. Chem. Soc. 2004, 126,
1214-1218.
Reciprocally, the association (kass) of liberated 5 back to DS1-
DS3 should be slowed down due to the dynamic loading of all
ZnPor platforms with the slider. In sum, both effects lower the
binding constant K5(DS1-DS3) = kass/kdiss and thereby increase the
concentration of liberated catalyst 5 in solution.
[18] R. Hernandez, H.-R. Tseng, J. W. Wong, J. F. Stoddart, J. I. Zink, J.
Am. Chem. Soc. 2004, 126, 3370-3371.
[19] Z. He, W. Jiang, C. A. Schalley, Chem. Soc. Rev. 2015, 44, 779-789.
[20] M. L. Saha, M. Schmittel, Org. Biomol. Chem. 2012, 10, 4651-4684.
[21] M. M. Safont-Sempere, G. Fernández, F. Würthner, Chem. Rev. 2011,
111, 5784-5814.
In conclusion it can be stated that three two-component slider-
on-desk systems were presented, in which the adjustment of the
binding strength of the slider’s foot to the ZnPor determines the
speed of the sliding motion. Addition of N-methylpyrrolidine (5)
as organocatalyst to DS1-DS3 generates catalytic machinery
consisting of three components. In 5D(S1-S3) the liberation of
the catalyst and the yield of the organocatalytic reaction are
unmistakably coupled to the machine speed. The liberation
results from a proximity effect which is remotely related to the
dynamic allosteric effect.[37,38] Coupling of an output (catalysis) to
the speed of a mechanical motion is a characteristic feature of
machinery. As nature is using nanomechanical motions for some
of its most demanding catalytic processes [39] it should be a great
incentive to study further links between motion and catalytic
activity in nanomechanical machinery.
[22] S. F. M. van Dongen, S. Cantekin, J. A. A. W. Elemans, A. E. Rowan, R.
J. M. Nolte, Chem. Soc. Rev. 2014, 43, 99-122.
[23] S. Erbas-Cakmak, D. A. Leigh, C. T. McTernan, A. L. Nussbaumer,
Chem. Rev. 2015, 115, 10081-10206.
[24]
A. J. McConnell, C. S. Wood, P. P. Neelakandan, J. R. Nitschke,
Chem. Rev. 2015, 115, 7729-7793.
[25] M. Xue, Y. Yang, X. Chi, X. Yan, F. Huang, Chem. Rev. 2015, 115,
7398-7501.
[26] J. C. M. Kistemaker, P. Stacko, J. Visser, B. L. Feringa, Nat. Chem.
2015, 7, 890-896.
[27] M. Schmittel, Chem. Commun. 2015, 51, 14956-14968.
[28] J.-P. Sauvage, Angew. Chem. Int. Ed. 2017, 56, 11080.- 11093.
[29] J. F. Stoddart, Angew. Chem. Int. Ed. 2017, 56, 11094 –11125.
[30] C. Burkhart, G. Haberhauer, Eur. J. Org. Chem. 2017, 1308- 1317.
[31] S. R. Domingos, A. Cnossen, W. J. Buma, W. R. Browne, B. L. Feringa,
M. Schnell, Angew. Chem. Int. Ed. 2017, 56, 11209- 11212.
[32] A. Goswami, I. Paul, M. Schmittel, Chem. Commun. 2017, 53, 5186-
5189.
Acknowledgement
We are grateful to Deutsche Forschungsgemeinschaft (SCHM
647/20-1) and the University of Siegen for financial support.
[33] L. K. S. von Krbek, C. A. Schalley, P. Thordarson, Chem. Soc. Rev.
2017, 46, 2622-2637.
[34] N. Mittal, S. Pramanik, I. Paul, S. De, M. Schmittel, J. Am. Chem. Soc.
2017, 139, 4270-4273.
Keywords: Supramolecular machinery, Speed, Catalysis,
[35] Control experiments with the non-dynamic analogs D‘S1-D‘S3 confirm
the relevance of sliding dynamics for the product yields, see SI, Figure
S88.
Multicomponent-Assembly, Self-sorting
[36] L. Favereau, A. Cnossen, J. B. Kelber, J. Q. Gong, R. M. Oetterli, J.
Cremers, L. M. Herz, H. L. Anderson, J. Am. Chem. Soc. 2015, 137,
14256-14259.
[1]
[2]
T. H. Kim, P. Mehrabi, Z. Ren, A. Sljoka, C. Ing; A. Bezginov, L. Ye, R.
Pomès, R. S. Prosser, E. F. Pai, Science 2017, 355, eaag2355.
L. Y. P. Luk, E. J. Loveridge, R. K. Allemann, Phys. Chem. Chem. Phys.
2015, 17, 30817-30827.
[37] J. Guo, H.-X. Zhou, Chem. Rev. 2016, 116, 6503-6515.
[38] C. Kremer, A. Lützen, Chem. Eur. J. 2013, 19, 6162-6196.
[39] M. Yoshida, E. Muneyuki, T. Hisabori, Nature Rev. Mol. Cell Biol. 2001,
2, 669–677.
[3]
[4]
D. Y. Zhang, E. Winfree, J. Am. Chem. Soc. 2008, 130, 13921-13926.
M. Larion, A. L. Hansen, F. Zhang, L. Bruschweiler-Li, V. Tugarinov, B.
G. Miller, R. Brüschweiler, Angew. Chem. Int. Ed. 2015, 54, 8129-8132.
A. Warshel, R. P. Bora, J. Chem. Phys. 2016, 144, 180901-180916.
[5]
This article is protected by copyright. All rights reserved.