Organometallics
ARTICLE
N-Methyl-2-trimethylsilylpropylpyridinium Tosylate (15 Ots). A
’ ASSOCIATED CONTENT
3
solution of the pyridine derivative 17 (50 mg) in deuteriochloroform
(0.5 mL) was treated with neat methyl tosylate (1.05 equiv) and the
solution left overnight. 1H NMR (500 MHz, CDCl3): δ 8.76 (1H, m),
8.34 (1H, t, J = 7.9, 7.8 Hz), 7.78 (2H, m), 3.05 (1H, m), 1.76 (1H, m),
0.63 (2H, m), ꢀ0.01, (9H, s). 13C NMR (125 MHz, CDCl3): δ 158.6,
146.6, 145.2, 128.1, 22.2, 16.4 (1J(CꢀSi(CH3)3) = 49.7 Hz), ꢀ2.1
(1J(Si(CH3)3) = 50.9 Hz), 45.6. 29Si NMR (80 MHz, CDCl3): δ 1.55.
S
Supporting Information. Full listings of geometries and
b
energies (Gaussian Archive entries) for ground-state structures and
a CIF file giving crystallographic data for 17aH+. This material is
crystal data have also been deposited at the Cambridge Crystal-
lographic Data Centre and assigned CCDC code 845803.
N-Methyl-4-trimethylsilylpropylpyridinium Tosylate (16 Ots). A
3
solution of the pyridine derivative 18 (50 mg) in deuteriochloroform
(0.5 mL) was treated with neat methyl tosylate (1.05 equiv) and the
solution left overnight. 1H NMR (500 MHz, CDCl3): δ 8.96 (2H, d, J =
6.5 Hz), 7.71 (2H, m), 7.56 (2H, d, J = 6.5 Hz), 7.30 (2H, m), 4.34 (3H,
s, NꢀCH3), 3.67 (2H, s), 2.74 (2H, m), 2.39 (3H, s), 2.26 (3H, s), 1.58
(2H, m), 0.45 (2H, m), ꢀ0.08 (s, 9H). 13C NMR (125 MHz, CDCl3): δ
162.0, 144.8, 131.8, 129.7, 128.4, 127.7, 127.4, 56.2, 48.0 (NꢀCH3).
39.4, 24.8, 21.6, 15.7 (1J(CꢀSi(CH3)3) = 50.3 Hz), ꢀ2.5 (1J(Si(CH3)3) =
50.8 Hz). 29Si NMR (80 MHz, CDCl3): δ 1.42.
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: whitejm@unimelb.edu.au.
’ ACKNOWLEDGMENT
We thank the Australian Research Council for financial
support (DP0770565) and an award of an APA to A.K. We also
thank the Victorian Partnership for Advanced Computing and
the Victorian Institute for Chemical Sciences High Performance
Computing Facility for computational time.
NMR Measurements To Determine the Influence of the
13
Silicon γ Effect on 29Si Chemical Shifts and 29Siꢀ C Cou-
pling Constants. Both 13C and 29Si NMR were run for 16 h for
compounds 15a, 16a, 17a, and 18. The resolution of the spectra can be
calculated by dividing the width (in Hz) by the square of the FT size. The
square of the FT size is required because the FT is composed of real and
imaginary points and the spectrum consists of real points only. Thus, for
the 13C NMR the digital resolution is 30 188.7/(131 072) ꢁ 2 = 0.46 Hz
and for 29Si the digital resolution is 59 612.5/(131 072) ꢁ 2 = 0.91 Hz.
Crystallography. Intensity data were collected with an Oxford
Diffraction SuperNova CCD diffractometer using Cu Kα radiation
(graphite crystal monochromator, λ = 1.541 84 Å); the temperature
during data collection was maintained at 130.0(2) K using an Oxford
Cryosystems cooling device.
’ REFERENCES
(1) (a) Colvin, E. B. Silicon in Organic Synthesis; RSC: London, 1981.
(b) Lambert, J. B. Tetrahedron 1990, 46, 2677–89.(c) White, J. M.;
Clark, C. I. Stereoelectronic Effects of Group 4 Metal Substituents. In
Topics in Stereochemistry; Denmark, S., Ed.; Wiley: New York, 1999;
Vol. 22, Chapter 3. (c) White, J. M. Aust. J. Chem. 1995, 48, 1227.
(d) Creary, X.; Kochly, E. D. J. Org. Chem. 2009, 74, 2134.
(2) (a) Lambert, J. B.; Singer, R. A. J. Am. Chem. Soc. 1992,
114, 10246. (b) Lambert, J. B.; Shawl, C. E.; Basso, E. Can. J. Chem.
2000, 78, 1441.
The structure was solved by direct methods and difference Fourier
synthesis.16 Thermal ellipsoid plots were generated using the program
ORTEP-317 integrated within the WINGX18 suite of programs.
Crystal data for 17aH+(picrate): C17H22N4O7Si, Mr = 422.48, T =
130.0(2) K, λ = 1.541 84 Å, triclinic, space group P1, a = 6.7542(10) Å,
b = 11.2277(12) Å, c = 13.9266(16) Å, α = 90.444(9)°, β = 98.291(11)°,
γ = 94.511(10)°, V = 1041.6(2) Å3, Z = 2, Dc = 1.347 Mg Mꢀ3, μ(Cu
Kα) = 1.408 mmꢀ1, F(000) = 444, crystal size 0.22 ꢁ 0.12 ꢁ 0.06 mm,
6822 reflections measured, 3757 independent reflections (Rint = 0.056),
final R = 0.0742 (I > 2σ(I)), Rw(F2) = 0.2148 (all data).
(3) Hassall, K. S.; White, J. M. Org. Lett. 2004, 6, 1737.
(4) (a) Muller, T.; Juhasz, M.; Reed, C. A. Angew. Chem., Int. Ed.
2004, 43, 1543. (b) Siehl, H. U.; Kaufmann, F. P. J. Am. Chem. Soc. 1992,
114, 4937. (c) Siehl, H. U.; Kaufmann, F. P.; Hori, K. J. Am. Chem. Soc.
1992, 114, 9343.
(5) (a) Happer, A.; Ng, J.; Pool, B.; White, J. J. Organomet. Chem.
2002, 659, 10. (b) Hassall, K.; Lobachevsky, S.; White, J. M. J. Org. Chem.
2005, 70, 1993. (c) Hassall, K.; Lobachevsky, S.; Schiesser, C. H.; White,
J. M. Organometallics 2007, 26, 1361. (c) Karnezis, A.; O’Hair, R. A. J.;
White, J. M. Organometallics 2009, 28, 6480.
(6) (a) Grob, C. A.; Rich, R. Tetrahedron Lett. 1978, 663. (b) Grob,
Mass Spectrometry Experiments. Mass spectrometry experi-
ments were carried out using a commercially available hybrid linear ion
trap and Fourier transform ion cyclotron resonance (FT-ICR) mass spec-
trometer (Finnigan LTQ-FT, Bremen, Germany), which is equipped
with an electrospray ionization source. Stock solutions were prepared
using 1 mmol of the pyridine derivative in 1 mL of acetonitrile and
methylated to form pyridinium ions, using 2ꢀ3 drops of iodomethane or
deuterated iodomethane. The solutions were introduced into the
electrospray source at a flow rate of 5 μL/min. Typical electrospray
conditions were employed and involve a needle potential of 4.0ꢀ5.0 kV,
a heated capillary temperature of 200 °C, sheath air, ca. 3ꢀ25. The
pyridinum precursor ion was mass-selected with a window of m/z 1 and
then subjected to CID using a corresponding normalized collision
energy of 25ꢀ45% and an activation Q of 0.25 for a period of 30 ms.
All high-resolution mass spectrometry experiments were carried out on
the same instrument. The [M + CH3]+ pyridinium ions were mass-
selected in the LTQ using standard procedures and were then analyzed
in the FT-ICR MS to generate the high-resolution tandem mass
spectrum. Calibration was carried out via the automatic calibration
function using the suggested LTQ calibration solution, consisting of
caffeine, MRFA, and Ultramark solution.
C. A. Angew. Chem. 1982, 94, 87.
(7) Adcock, W.; Krystic, A.; Duggan, P. J.; Shiner, V. J., Jr.; Coope, J.;
Ensinger, M. W. J. Am. Chem. Soc. 1990, 112, 3140.
(8) Adcock, W.; Coope, J.; Shiner, V. J., Jr.; Trout, N. A. J. Org. Chem.
1990, 55, 1411.
(9) Lambert, J. B.; Salvador, L. A.; So, J.-H. Organometallics 1993,
12, 697.
(10) Becke, A. D. Phys. Rev. 1988, 38, 3098.
(11) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; , Jr., T.Vreven, Kudin,
K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; ,Barone, V.;
Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.;
Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa,
J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.;
Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.;
Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.;
Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.;
Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich,
S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.;
Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.;
Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.;
Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; M. A.
Al-Laham, Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.;
5673
dx.doi.org/10.1021/om200510a |Organometallics 2011, 30, 5665–5674