Journal of the American Chemical Society
Communication
(2) (a) Geng, Y.; Dalhaimer, P.; Cai, S.; Tsai, R.; Tewari, M.; Minko,
T.; Discher, D. E. Nat. Nanotech. 2007, 2, 249. (b) Petros, R. A.;
DeSimone, J. M. Nat. Rev. Drug Discov. 2010, 9, 615. (c) Yoo, J.-W.;
Irvine, D. J.; Discher, D. E.; Mitragotri, S. Nat. Rev. Drug Discov. 2011,
10, 521. (d) Popovic, Z.; Liu, W.; Chauhan, V. P.; Lee, J.; Wong, C.;
Greytak, A. B.; Insin, N.; Nocera, D. G.; Fukumura, D.; Jain, R. K.;
Bawendi, M. G. Angew. Chem., Int. Ed. 2010, 49, 8649.
(3) Torchilin, V. P. Pharm. Res. 2007, 24, 1.
(4) Gatenby, R. A.; Gillies, R. J. Nat. Rev. Cancer 2004, 4, 891.
(5) Hanahan, D.; Weinberg, R. A. Cell 2011, 144, 646.
(6) Sawant, R. M.; Hurley, J. P.; Salmaso, S.; Kale, A.; Tolcheva, E.;
Levchenko, T. S.; Torchilin, V. P. Bioconjugate Chem. 2006, 17, 943.
(7) Hiemenz, P. C.; Rajagopalan, R. Principles of Colloid and Surface
Chemistry, 3rd ed.; Marcel Dekker: New York, 1997.
(8) (a) Cui, H.; Webber, M. J.; Stupp, S. I. Biopolymers 2010, 94, 1.
(b) Missirlis, D.; Chworos, A.; Fu, C. J.; Khant, H. A.; Krogstad, D. V.;
Tirrell, M. Langmuir 2011, 27, 6163. (c) Paramonov, S. E.; Jun, H. W.;
Hartgerink, J. D. J. Am. Chem. Soc. 2006, 128, 7291. (d) Goldberger, J.
E.; Berns, E. J.; Bitton, R.; Newcomb, C. J.; Stupp, S. I. Angew. Chem.,
Int. Ed. 2011, 50, 6292.
(9) The Merck Manual of Diagnosis and Therapy, 19th ed.; Porter, R.
S., Kaplan, J. L., Eds.; Merck Publishing Group: Rahway, NJ, 2011.
(10) (a) Nunn, A. D.; Linder, K. E.; Tweedle, M. F. Q. J. Nucl. Med.
1997, 41, 155. (b) Wedeking, P.; Shukla, R.; Kouch, Y. T.; Nunn, A.
D.; Tweedle, M. F. Magn. Reson. Imag. 1999, 17, 569.
sheet propensity can be generally used to systematically shift
the transition pH.
Relaxivity values of water protons in the presence of PA5 at
500 μM, at pH of 4 and 10, were found to be 8.3 and 6.6 mM−1
s−1, respectively, using a 1.5 T magnet. These values were
higher than those measured for a Magnevist control standard
(4.5 mM−1 s−1).14 This relaxivity increase from spherical
micelles to nanofibers likely originates from the longer
rotational correlation time when imaging agents are coupled
to large molecular weight objects, which has been well-
established for magnetic resonance agents coupled to polymers
and peptide amphiphiles.15 The relaxivity of these systems is
about 25−50% lower than that of other supramolecular
assemblies with similar K(DO3A:Gd) linkages.15a,16 This
suggests that the Gd(DO3A) motion is independently faster
than that of the nanofiber due to the conformationally flexible
E4K tether, which can be further optimized. Regardless, the
primary mechanism for tumor imaging relies on the increased
local concentration of the more slowly diffusing nanofibers in
the tumor environment compared to the bloodstream, but the
improved relaxivity of fibers compared to spheres could serve as
a secondary mechanism for enhanced tumor detection.
In summary, we have shown that, through judicious design, it
is possible to use the power of self-assembly to develop
dynamic materials that change shape and size in response to
slight changes in pH, in solutions that have monovalent and
divalent ion concentrations similar to those of serum. This
morphological change is rapid and reversible and occurs under
thermodynamic equilibrium, which is ideal for in vivo imaging
and drug delivery applications. Although further optimization of
the spherical-to-nanofiber transition pH is required for in vivo
MRI applications, the molecules presented here outline a
design strategy for precisely tuning self-assembly behavior.
(11) Aguiar, J.; Carpena, P.; Molina-Bolivar, J. A.; Ruiz, C. C. J.
Colloid Interface Sci. 2003, 258, 116.
(12) Kim, C. A.; Berg, J. M. Nature 1993, 362, 267.
(13) Israelachvili, J. N. Intermolecular and Surface Forces, 2nd ed.;
Academic Press: San Diego, CA, 1992.
(14) (a) Stanisz, G. J.; Henkelman, R. M. Magn. Reson. Med. 2000,
44, 665. (b) Sasaki, M.; Shibata, E.; Kanbara, Y.; Ehara, S. Magn. Res.
Med. Sci. 2005, 4, 145.
(15) (a) Bull, S. R.; Guler, M. O.; Bras, R. E.; Meade, T. J.; Stupp, S.
I. Nano Lett. 2005, 5, 1. (b) Bull, S. R.; Guler, M. O.; Bras, R. E.;
Venkatasubramanian, P. N.; Stupp, S. I.; Meade, T. J. Bioconjugate
Chem. 2005, 16, 1343. (c) Nicolle, G. M.; Toth, E.; Eisenwiener, K. P.;
Macke, H. R.; Merbach, A. E. J. Biol. Inorg. Chem. 2002, 7, 757.
(16) Accardo, A.; Tesauro, D.; Aloj, L.; Pedone, C.; Morelli, G.
Coord. Chem. Rev. 2009, 253, 2193.
ASSOCIATED CONTENT
■
S
* Supporting Information
Experimental methods, materials, and synthesis schemes;
HPLC chromatagrams, ESI-MS spectra, CD spectra, pH
titration curves, and CAC determination for relevant PAs.
This material is available free of charge via the Internet at
AUTHOR INFORMATION
■
Corresponding Author
Author Contributions
‡These authors contributed equally.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank N. Raju and K. Kumar for helpful discussions. TEM
images presented in this report were generated using the
instruments and services at the Campus Microscopy and
Imaging Facility at The Ohio State University. J.G. thanks The
Ohio State University Research Foundation, and M.T. thanks
the Stefanie Spielman Foundation for financial support.
REFERENCES
■
(1) (a) Torchilin, V. P. Nat. Rev. Drug Discov. 2005, 4, 145.
(b) Matsumura, Y.; Maeda, H. Cancer Res. 1986, 46, 6387.
3650
dx.doi.org/10.1021/ja211113n | J. Am. Chem. Soc. 2012, 134, 3647−3650