Communication
ChemComm
bacteria and displayed low toxicity. The antimicrobial activity
was positive charge-dependent, related to the hydrophobicity
and architecture of the TNAPs, and, to a lesser extent to the
secondary structure. We believe that TNAPs hold considerable
promise for efficient antibacterial applications in future, and
this versatile synthetic strategy can be broadly applied for the
high-throughput functional screening of polypeptide libraries
for biomedical applications, such as antibiofilm and antifouling.
The Basic Science Research Program through the National
Research Foundation of Korea (2018R1D1A1A09081809) supported
this work. The authors also thank the BK21 PLUS Program for
partial financial support.
Conflicts of interest
There are no conflicts to declare.
Notes and references
Fig. 3 (a) SEM micrographs and (b) confocal fluorescence microscopic
images of control and TNAP-treated groups of E. coli and B. subtilis.
1
J. M. A. Blair, M. A. Webber, A. J. Baylay, D. O. Ogbolu and
L. J. V. Piddock, Nat. Rev. Microbiol., 2015, 13, 42–51.
2
Y. Zheng, Y. Luo, K. Feng, W. Zhang and G. Chen, ACS Macro Lett.,
2019, 8, 326–330.
preliminarily hypothesize that the positively charged K moieties
can bind to the negatively charged cell membranes via electro-
static interaction, facilitating BE components to pierce into the
membrane and disrupt the phospholipid bilayer. Finally, pores
form in the membrane of the bacteria, thus leading to cytoplasmic
3 S. J. Lam, N. M. O’Brien-Simpson, N. Pantarat, A. Sulistio,
E. H. H. Wong, Y.-Y. Chen, J. C. Lenzo, J. A. Holden, A. Blencowe,
E. C. Reynolds and G. G. Qiao, Nat. Microbiol., 2016, 1, 16162.
4
A. T. Y. Yeung, S. L. Gellatly and R. E. W. Hancock, Cell. Mol. Life Sci.,
2011, 68, 2161–2176.
5
(a) H. Jenssen, P. Hamill and R. E. W. Hancock, Clin. Microbiol. Rev.,
2006, 19, 491–511; (b) P. Fernandes and E. Martens, Biochem.
8
leakage and the death of the bacteria. A Live/Dead Baclight
Pharmacol., 2017, 133, 152–163.
fluorescent assay was conducted to further confirm the ability of
TNAPs to disrupt the bacterial membrane. The s-TNAP-treated
E. coli and B. subtilis are stained with red fluorescence, suggesting
the membrane damage of bacteria (Fig. 3b). A hemolysis assay was
conducted to evaluate the hemocompatibility of the TNAPs using
mouse red blood cells. It was found that TNAPs exhibit good
6 S. Martens, J. Van den Begin, A. Madder, F. E. Du Prez and P. Espeel,
J. Am. Chem. Soc., 2016, 138, 14182–14185.
C. Zhou, X. Qi, P. Li, W. Chen, L. Mouad, M. W. Chang, S. Su Jan
7
Leong and M. B. Chan-Park, Biomacromolecules, 2010, 11, 60–67.
8 C. Zhou, M. Wang, K. Zou, J. Chen, Y. Zhu and J. Du, ACS Macro
Lett., 2013, 2, 1021–1025.
9
H. Lu and J. Cheng, J. Am. Chem. Soc., 2008, 130, 12562–12563.
10 T. J. Deming, Nature, 1997, 390, 386–389.
blood compatibility and low toxicity (Table S5, ESI†). Besides, we 11 T. Stukenkemper, J. F. G. A. Jansen, C. Lavilla, A. A. Dias, D. F.
Brougham and A. Heise, Polym. Chem., 2017, 8, 828–832.
2 Y. Zhang, R. Liu, H. Jin, W. Song, R. Augustine and I. Kim, Commun.
Chem., 2018, 1, 40.
1
have chosen c- and s-K -r-BE0.2 that show notable antibacterial
performances to examine the cytotoxicity towards mammalian
1
cells. Fig. S14 (ESI†) reveals that the NIH3T3 fibroblast cells retain 13 H. R. Kricheldorf, C. v. Lossow and G. Schwarz, Macromol. Chem.
Phys., 2005, 206, 282–290.
high metabolic activities in a wide concentration range of TNAPs,
most probably owing to the low cytotoxicity of amino acid
1
4 H. Zhang, Y. Nie, X. Zhi, H. Du and J. Yang, Chem. Commun., 2017,
3, 5155–5158.
components. Collectively, all the discussion above suggests 15 W. Zhao, Y. Gnanou and N. Hadjichristidis, Chem. Commun., 2015,
5
51, 3663–3666.
that the tailored TNAPs are highly biocompatible and can be a
promising alternative for traditional antibiotics in terms of
antimicrobial efficacy.
A facile and scalable strategy to synthesize l-, h-, s-, and
c-TNAPs with different K to BE ratios was addressed. The IHC-
catalyzed polymerization streamlined the process from NCA
1
6 L. Motiei, S. Rahimipour, D. A. Thayer, C.-H. Wong and
M. R. Ghadiri, Chem. Commun., 2009, 3693–3695.
17 European Committee for Antimicrobial Susceptibility Testing
EUCAST) of the European Society of Clinical Microbiology and
(
Infectious Diseases (ESCMID), Clin. Microbiol. Infect., 2003, 9, ix–xv.
8 M. R. E. Santos, P. V. Mendonça, M. C. Almeida, R. Branco, A. C.
Serra, P. V. Morais and J. F. J. Coelho, Biomacromolecules, 2019, 20,
1
1
146–1156.
9 M. N. Melo, R. Ferre and M. A. R. B. Castanho, Nat. Rev. Microbiol.,
009, 7, 245–250.
monomers toward polypeptides with controllable M and high
n
1
chain-end fidelity by circumventing the tedious synthetic steps,
2
and complex and expensive experimental setups, enabling eco- 20 J. T. Mika, G. Moiset, A. D. Cirac, L. Feliu, E. Bardaj ´ı , M. Planas,
D. Sengupta, S. J. Marrink and B. Poolman, Biochim. Biophys. Acta,
Biomembr., 2011, 1808, 2197–2205.
1 P. Li, C. Zhou, S. Rayatpisheh, K. Ye, Y. F. Poon, P. T. Hammond,
friendly, large-scale and quick library synthesis of TNAPs for
further antimicrobial applications. The tailored TNAPs were
2
highly active against both Gram-positive and Gram-negative
H. Duan and M. B. Chan-Park, Adv. Mater., 2012, 24, 4130–4137.
This journal is ©The Royal Society of Chemistry 2020
Chem. Commun., 2020, 56, 356--359 | 359