660
F. J. N. Moles et al.
Letter
Synlett
metry 2011, 22, 1945. (d) Chen, F.; Gong, P.; Gao, Y.; Zhang, H.;
Zhou, A. Mini-Rev. Org. Chem. 2013, 10, 207. (e) Mlynarski, J.;
Baś, S. Chem. Soc. Rev. 2014, 43, 577.
80%); [α]26 –29 (c = 0.5, CHCl3); Rf 0.43 (hexane–EtOAc, 7:3;
D
revealed with KMnO4). IR: 3460.6 (OH), 1733.69 (C=O), 1703.8
(C=O), 1421.3 (MeC=O) cm–1 1H NMR (300 MHz, CDCl3): δ =
.
(8) Gruttadauria, M.; Giacalone, F.; Noto, R. Adv. Synth. Catal. 2009,
351, 33; and references quoted therein.
3.87 (dd, J = 7.9, 3.0 Hz, 1 H, CHOH), 3.56 (d, J = 7.9 Hz, 1 H, OH),
3.03–3.15 (m, 1 H, Hcyclo), 2.32–2.51 (m, 2 H, Hcyclo), 2.30 (s, 3 H,
Me), 2.06–2.20 (m, 2 H, Hcyclo), 1.65–2.06 (m, 4 H, Hcyclo). 13C
NMR (75 MHz, CDCl3): δ = 212.3 (C), 210.0 (C), 77.9 (CH), 53.7
(CH), 42.0 (CH2), 30.3 (CH2), 26.9 (CH2), 25.7 (Me), 24.8 (CH2).
HRMS: m/z [M+ + H] calcd for C9H14O3: 171.1021; found:
171.1020.
(9) (a) Guillena, G.; Hita, M. C.; Nájera, C. Tetrahedron: Asymmetry
2006, 17, 729. (b) Gryko, D.; Kowalczyk, B.; Zawadzki, L. Synlett
2006, 1059. (c) Guizzetti, S.; Benaglia, M.; Pignataro, L.; Puglisi,
A. Tetrahedron: Asymmetry 2006, 17, 2754. (d) Ma, G.-N.; Zhang,
Y.-P.; Shi, M. Synthesis 2007, 197. (e) Guizzetti, S.; Benaglia, M.;
Raimondi, L.; Celentano, G. Org. Lett. 2007, 9, 1247.
(f) Kucherenko, A. S.; Syutkin, D. E.; Zlotin, S. G. Russ. Chem. Bull.
2008, 57, 591. (g) Guillena, G.; Hita, M. C.; Nájera, C.; Viózquez,
S. F. Tetrahedron: Asymmetry 2007, 18, 2300. (h) Guillena, G.;
Hita, M. C.; Nájera, C.; Viózquez, S. F. J. Org. Chem. 2008, 73,
5933. (i) Viózquez, S. F.; Bañón-Caballero, A.; Guillena, G.;
Nájera, C.; Gómez-Bengoa, E. Org. Biomol. Chem. 2012, 10, 4029.
(10) (a) Guillena, G.; Nájera, C.; Viózquez, S. F. Synlett 2008, 3031.
(b) Viózquez, S. F.; Guillena, G.; Nájera, C.; Bradshaw, B.;
Etxebarria-Jardí, G.; Bonjoch, J. Org. Synth. 2011, 88, 317.
(11) (a) Bañón-Caballero, A.; Guillena, G.; Nájera, C. Green Chem.
2010, 12, 1599. (b) Bañón-Caballero, A.; Guillena, G.; Nájera, C.
Helv. Chim. Acta 2012, 95, 1831. (c) Bañón-Caballero, A.;
Guillena, G.; Nájera, C.; Faggi, E.; Sebastián, R. M.; Vallribera, A.
Tetrahedron 2013, 69, 1307. (d) Bañon-Caballero, A.; Guillena,
G.; Nájera, C. J. Org. Chem. 2013, 79, 5349.
To a mixture of methylglyoxal (40% aqueous solution, 0.25
mmol, 0.038 mL) and catalyst (10 mol%) at the indicated tem-
perature was added the corresponding aldehyde (0.5 mmol).
The reaction was stirred until the methylglyoxal was consumed
(monitored by TLC). Ph3PCHCO2Et (0.178 g, 0.5 mmol) was
added and the reaction mixture was stirred for 2 h. Upon com-
pletion, the reaction was quenched by passing the reaction
mixture through a silica gel pad, and concentrated in vacuo. The
resulting residue was purified by chromatography (hexanes–
EtOAc) to yield the α,β-unsaturated ester. Analytical data of
compound 10e are given as a representative compound (see the
Supporting Information for the rest of the compound data):
obtained as a diastereoisomer mixture (61:39, anti:syn); color-
less oil (yield: 0.035 g, 53%); [α]26D –12 (c = 1.2; CHCl3); Rf 0.30
(hexane–EtOAc, 70:30; revealed with KMnO4). IR: 3439.4 (OH),
1708.6 (C=O), 11692.2 (C=O), 1269.9 (MeC=O) cm–1 1H NMR
.
(12) (a) Moles, F. J. N.; Guillena, G.; Nájera, C. RSC Adv. 2014, 4, 9963.
(b) Moles, F. J. N.; Guillena, G.; Nájera, C.; Gómez-Bengoa, E. Syn-
thesis 2014, DOI: 10.1055/s-0034-1379546.
(13) Moles, F. J. N.; Bañón-Caballero, A.; Guillena, G.; Nájera, C. Tetra-
hedron: Asymmetry 2014, 25, 1323.
(14) (a) Henze, M.; Müller, R. Z. Physiol. Chem. 1933, 214, 281.
(b) Schechter, M. S.; Green, N.; LaForge, F. B. J. Am. Chem. Soc.
1949, 71, 3165.
(15) (a) Holmes, F. L. Hans Krebs - The Formation of a Scientific Life
1900-1933; Oxford University Press: Oxford, 1991, 245.
(b) Fang, J.-M.; Wang, K.-C.; Cheng, Y.-S. J. Chin. Chem. Soc. 1991,
38, 297. (c) Li, Y.; Shi, Y.-P. Pharmazie 2007, 62, 714.
(300 MHz, CDCl3): δ = 7.88–7.98 (m, 2 H, ArH), 7.50–7.73 (m, 3
H, ArH), 7.15 (dd, J = 15.7, 7.4 Hz, 1 H, CH=CH), 5.94 (dd, J = 15.7,
1.4 Hz, 1 H, CH=CH), 5.20 (dd, J = 6.4, 2.4 Hz, 1 H, CHOH), 4.22 (q,
J = 7.1 Hz, 2 H, OCH2CH3), 3.78 (d, J = 6.4 Hz, 1 H, OH), 2.78–2.91
(m, 1 H), 1.32 (t, J = 7.1 Hz, 3 H, OCH2CH3), 0.87 (d, J = 6.8 Hz, 3
H, CHMe).13C NMR (75 MHz, CDCl3): δ = 200.6 (C), 166.3 (C),
149.8 (CH), 134.3 (CH), 133.5 (C), 129.1 (2 × CH), 128.5 (2 × CH),
121.7 (CH), 75.0 (CH), 60.4 (CH2), 40.7 (CH), 14.3 (Me), 11.5
(Me). HRMS: m/z [M+ + Na] calcd for C15H18O4: 285.1103; found:
285.1111.
(18) Arylglyoxals are important reagents for the synthesis of hetero-
cyclic compounds. See, for instance: Eftekhari-Sis, B.; Zirak, M.;
Akbari, A. Chem. Rev. 2013, 113, 2953.
(16) Stereochemistry was assigned by comparison of the optical
rotation values given in the literature, in reference 5a.
(19) To a mixture of the phenylglyoxal monohydrate (0.25 mmol,
0.028 g) and catalyst (10 mol%) at the indicated temperature
was added the corresponding aldehyde (0.5 mmol). The reac-
tion was stirred until the phenylglyoxal was consumed (moni-
tored by TLC). Ph3PCHCO2Et (0.178 g, 0.5 mmol) was added and
the reaction mixture was stirred for 2 h. Upon completion, the
reaction was quenched by passing the reaction mixture through
a silica gel pad, and the filtrate concentrated in vacuo. The
resulting residue was purified by chromatography (hexanes–
EtOAc) to yield the α,β-unsaturated ester.
(17) To a mixture of the methylglyoxal (40% aqueous solution, 0.25
mmol, 0.038 mL) and catalyst (10 mol%) at the indicated tem-
perature was added the corresponding ketone (1.25 mmol). The
reaction was stirred until the methylglyoxal was consumed
(monitored by TLC). The resulting residue was purified by chro-
matography (hexanes–EtOAc) to yield the pure aldol product.
During purification aldols 7d–f underwent a slight epimeriza-
tion. Analytical data of compound 7b are given as a representa-
tive compound (see the Supporting Information for the rest of
the compound data): (2S,1′R)-isomer; yellow oil (yield: 0.034 g,
© Georg Thieme Verlag Stuttgart · New York — Synlett 2015, 26, 656–660