3
Scheme 2. The formylation of 1b.
Declaration of Competing Interest
The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.
Acknowledgments
The reported study was funded by RFBR, project number 19-
33-90051. Experimental work was carried out using the equipment
of the Baikal Analytical Centre for Collective Use of the Siberian
Branch of the Russian Academy of Sciences. The authors would
like to thank Dr.Sc. Rozentsveig I.B. and the employees of the
laboratory of unsaturated heteroatomic compounds of Irkutsk
Institute of Organic Chemistry SB RAS for the helpful suggestions
and fruitful discussion.
Figure 1. X-ray structure of 3b.
The formation of product 3b can be rationalized as a cascade
process catalyzed by acid (product of the partial hydrolysis of
chloroanhydride with traces of water, Scheme 3).
Supplementary Material
Supplementary data to this article can be found online at
References
N
C
1.
2.
Brandsma, L. Eur. J. Org. Chem. 2001, 4569–4581. doi:
10.1002/1099-0690(200112)2001:24<4569::aid-
ejoc4569>3.0.CO;2-w
Mikhaleva, A. I.; Schmidt, E. Yu. In Selected Methods for
Synthesis and Modification of Heterocycles; Kartsev, V. G., Ed.;
IBS Press: Moscow, 2002, 331.
H
H
N
N
H
N
N
H
CH2
C
C
CH2
3.
4.
5.
Romila, D.; Schlingmann, G.; Valerie, S.; Xidong, F.; Carter, G. J.
Nat. Prod., 2005, 68, 277–279. doi:org/10.1021/np0496542
Hue, T.; Scott, A. I. Tetrahedron Lett., 1998, 39, 6651–6654.
doi:10.1016/S0040-4039(98)01426-9
Sessler, J. L.; Roznyatovskiy, V.; Pantos, J. D.; Borisova, N. E.;
Reshetova, M. D.; Lynch, V. M.; Krustalev, V. N.; Ustynyuk, J. A.
Org. Lett., 2005, 7, 5277–5280. doi:10.1021/ol052162b
Hunt, J. T.; Mitt, T.; Borzilleri, R.; Gullo-Brown, J.; Fargnolli, J.;
Fink, B.; Han, W. C.; Mortillo, S.; Vite, G.; Wautlet, B.; Wong, T.;
Yu, C.; Zheng, X.; Bhide, R. J. Med. Chem., 2004, 47, 4054–4059.
doi:10.1021/jm049892u
A
N
N
N
N
N
N
H
CH3
CH2
C
CH2
CH3
6.
7.
O
i. DMF/(COCl)2
ii. CH3COONa/H2O
N
N
Bouérat, L.; Fensholdt, J.; Liang, X.; Havez, S.; Nielsen, S. F.;
Hansen, J. R.; Bolvig, S.; Andersson, C. J. Med. Chem., 2005, 48,
5412–5414. doi:10.1021/jm0504151
N
N
O
CH3
CH3
CH3
3b
CH3
8.
9.
Westmoreland,
I.
Synthetic
Page
2005,
224;
see
Molina, B. G.; Cianga, L.; Bendrea, A.-D.; Cianga, I; del Valle, L.
J.; Estrany, F.; Aleman, C.; Armelin, E. Polym. Chem., 2018, 9,
4218–4232 doi: org/10.1039/c8py00762d
Scheme 3. Possible mechanism for the formation of 3b.
10. Yang, L.-Y.; Chen, Q.-Q.; Yang, G.-Q.; Ma, J.-S. Tetrahedron,
2003, 59, 10037–10041 doi: org/10.1016/j.tet.2003.10.049
11. Brzozowski, T.; Konturek, P.C.; Konturek, S.J.; Brzozowska, I.;
Pawlik, T. J. Physiol. Pharmacol., 2005, 56, 33–55.
12. Eglen, R. M.; Whiting, R. L. Br. J. Pharmacol., 1989, 98, 1335–
1343. doi:org/10.1111/j.1476-5381.1989.tb12682.x
The cascade assembly is completed by the formation of the
pyrrole rings in the DMF/(COCl)2 system, one of which is
assembled at position 3 to give product 3.
In the case of pyrroles with electron-withdrawing substituents
in the α'- and β'-positions of the ring, the decreased electron
density on the allene fragment makes this reaction impossible. It
is assumed that the reduced yield of compound 2a is due to the
same process. Due to the presence of bulky aliphatic substituents,
the expected product 3a was not isolated by column
chromatography. We also believe that the decreased yield of
compound 2j bearing a donating substituent on the pyrrole ring
(58%) can be due to a minor side process affording product 3g,
which was not isolated.
13. Takeuchi, K.; Yagi, K.; Kato, S.; Ukawa, H. Gastroenterology,
1997,
113,
1553–1559.
doi:org/10.1053/gast.1997.v113.pm9352857
14. Toshina, K.; Hirata, I.; Maemura, K.; Sasaki, S.; Murano, M.; Nitta,
M.; Yamauchi, H.; Nishikawa, T.; Hamamoto, N.; Katsu, K.;
Scand. J. Immunol., 2000, 52, 570–575. doi:org/10.1111/j.1365-
3083.2000.00815.x
15. Souli, C.; Avlonitis, N.; Calogeropoulou, T.; Tsotinis, A.; Maksay,
G.; Biro, T.; Politi, A.; Mavromoustakos, T.; Makriyannis, A.; Reis,
H.; Papadopoulos, M. J. Med. Chem., 2005, 48, 5203 – 5214.
doi:org/10.1021/jm050271q
16. Mellon, S. H.; Griffin, L. D. Trends Endocrinol. Metab., 2002, 13,
35–43. doi:10.1016/s1043-2760(01)00503-3
3. Conclusion
17. Hoffmann-Roder, A.; Krause, N. Angew. Chem. Int. Ed., 2004, 43,
1196 – 1216. doi: 10.1002/anie.200300628
18. Silverstein, R. M.; Ryskiewicz, E. E.; Willard, C. Org. Synth. 1963,
36, 74.
19. Mikhaleva, A. I.; Zaitsev, A. B.; Ivanov, A. V.; Schmidt, E. Yu.;
Vasil’tsov, A. M.; Trofimov, B. A. Tetrahedron Lett. 2006, 47,
3693–3696. doi:org/10.1016/j.tetlet.2006.03.126
Despite the high sensitivity of N-allenylpyrroles to acidic
reagents, they can be selectively formylated by utilizing the
modified formylating complex DMF/(COCl)2, thus opening the
route to
a new class of substituted N-allenylpyrrole-2-
carbaldehydes, which are promising building blocks and reagents.