Journal of the American Chemical Society
Page 4 of 5
(7) Enthaler, S.; Haberberger, M.; Irran, E. Chem. Asian J. 2011, 6,
1613.
azole plane, which, subsequently, will produce α,αꢀdisilylalkenyl
1
2
3
4
5
6
7
8
cobalt intermediate and lead the formation of α,αꢀdisilylalkenes.
Consistent with this explanation, we found that the catalytic sysꢀ
tem is invalid for the hydrosilylation of TMSC≡CTMS, and that
the steric property of the silyl moiety affects the reaction selectiviꢀ
ty. For examples, the hydrosilylation reaction of 1ꢀoctyne with the
primary silane H3SiPh (entry 10 in Table 1) exhibits poor selecꢀ
tivity, and the reaction with HSiPh3 (entry 11 in Table 1) could
not afford the hydrosilylation product.
(8) (a) Monfette, S.; Turner, Z. R.; Semproni, S. P.; Chirik, P. J. J.
Am. Chem. Soc. 2012, 134, 4561. (b) Obligacion, J. V.; Chirik,
P. J. J. Am. Chem. Soc. 2013, 135, 19107. (c) Friedfeld, M. R.;
Shevlin, M.; Hoyt, J. M.; Krska, S. W.; Tudge, M. T.; Chirik, P.
J. Science 2013, 342, 1076. (d) Obligacion, J. V.; Semproni, S.
P.; Chirik, P. J. J. Am. Chem. Soc. 2014, 136, 4133. (e) Atienza,
C. C. H.; Diao, T.; Weller, K. J.; Nye, S. A.; Lewis, K. M.; Delꢀ
is, J. G. P; Boyer, J. L.; Roy, A. K.; Chirik, P. J. J. Am. Chem.
Soc. 2014, 136, 12108.
(9) (a) Zhang, G.; Scott, B. L.; Hanson, S. K. Angew. Chem. Int. Ed.
2012, 51, 12102. (b) Zhang, G.; Vasudevan, K. V.; Scott, B. L.;
Hanson, S. K. J. Am. Chem. Soc. 2013, 135, 8668.
(10) Chen, C.; Dugan, T. R.; Brennessel, W. W.; Weix, D. J.; Holꢀ
land, P. L. J. Am. Chem. Soc. 2014, 136, 945.
In summary, we found a lowꢀcoordinate cobalt(I) alkyl complex
bearing bulky IAd ligand effects hydrosilylation of alkynes to
produce synꢀadduct of vinylsilanes with high efficiency, selectiviꢀ
ty, and good functional group compatibility. Reactivity study on
the precatalyst has led to the isolation of the first example of lowꢀ
coordinate cobalt(I) silyl complex and a novel cobalt(I)ꢀalkyneꢀ
alkyl complex. The silyl complex shows comparable activity and
selectivity in alkyne hydrosilyation as the alkyl complex. These
results collectively point out a modified ChalkꢀHarrod mechanism
for the cobaltꢀcatalyzed reaction. Molecular structure analysis on
the lowꢀcoordinate cobalt complexes implies that the selectivity is
governed by steric factors. Currently, we are exploring the utility
of the vinylhydrosilanes for silicon polymer synthesis.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(11) Mo, Z.; Liu, Y.; Deng, L. Angew. Chem. Int. Ed. 2013, 52,
10845.
(12) (a) Mo, Z.; Chen, D.; Leng, X.; Deng, L. Organometallics 2012,
31, 7040. (b) Przyojski, J. A.; Arman, H. D.; Tonzetich, Z. J.
Organometallics 2013, 32, 723. (c) Danopoulos, A. A.; Braunꢀ
stein, P. Dalton Trans. 2013, 42, 7276. (d) Day, B. M.; Pal, K.;
Pugh, T.; Tuck, J.; Layfield, R. A. Inorg. Chem. 2014, 53,
10578.
(13) For detailed information please, see supporting information.
(14) The large solution magnetic moments suggests the contribution
of orbital angular momentum as observed in other lowꢀ
coordinate cobaltꢀNHC complexes in Ref. 12.
(15) Young, J. F.; Yap, G. P. A.; Theopold, K. H. J. Chem. Cryst.
2009, 39, 846.
(16) Similar selectivity has been observed in [Cp*Ru(NCMe)3][PF6]ꢀ
catalyzed hydrosilylation reactions. See: Ding, S.; Song, L.ꢀJ.;
Chung, L. W.; Zhang, X.; Sun, J. J. Am. Chem. Soc. 2013, 135,
13835.
(17) (a) Vélez, C. L; Markwick, P. R. L.; Holland, R. L.; DiPasquale,
A. G.; Rheingold, A. L.; O’Connor, J. M. Organometallics
2010, 29, 6695. (b) Mo, Z.; Li, Y.; Lee, H. K.; Deng, L. Organꢀ
ometallics 2011, 30, 4687.
(18) (a) Yong, L.; Hofer, E.; Wartchow, R.; Butenschön, H. Organꢀ
ometallics 2003, 22, 5463. (b) Whited, M. T.; Mankad, N. P.;
Lee, Y.; Oblad, P. F.; Peters, J. C. Inorg. Chem. 2009, 48, 2507.
(19) Yu, Y.; Smith, J. M.; Flaschenriem, C. J.; Holland, P. L. Inorg.
Chem. 2006, 45, 5742.
(20) Several mechanisms, for examples ChalkꢀHarrod, modified
ChalkꢀHarrod, sigmaꢀbond metathesis, and metalꢀsilylene mechꢀ
anisms, have been proposed for transitionꢀmetalꢀcatalyzed hyꢀ
drosilylation of alkenes and alkynes. For references: see: (a)
Chalk, A. J.; Harrod, J. F. J. Am. Chem. Soc. 1965, 97, 16. (b)
Seitz, F.; Wrighton, M. S. Angew. Chem. Int. Ed. 1988, 27, 289.
(c) Fu, P. F.; Brard, L.; Li, Y. W.; Marks, T. J. J. Am. Chem.
Soc. 1995, 117, 7157. (d) Glaser, P. B.; Tilley, T. D. J. Am.
Chem. Soc. 2003, 125, 13640. The modified ChalkꢀHarrod
mechanism or sigmaꢀbond metathesis mechanism via Coꢀsilyl
intermediates is very likely involved in the current catalytic sysꢀ
tem. However, with limited information in hands at this stage,
we could not exclude one or the other.
ASSOCIATED CONTENT
Supporting Information
Xꢀray crystallographic files in CIF format for the new complexes,
experimental procedures, and characterization data. This material
AUTHOR INFORMATION
Corresponding Author
* Eꢀmail: deng@sioc.ac.cn
ACKNOWLEDGMENT
We thank the financial support from the National Basic Research
Program of China (No. 2011CB808705), the National Natural
Science Foundation of China (Nos. 21121062, 21222208, and
21432001), and the Chinese Academy of Sciences.
REFERENCES
(1) (a) Bullock, R. M. (Ed.) Catalysis without Precious Metals,
WileyꢀVCH: Weinheim, 2010. (b) Jaouen, F.; Proietti, E.;
Lefèvre, M.; Chenitz, R.; Dodelet, J.ꢀP.; Wu, G.; Chung, H. T.;
Johnston, C. M.; Zelenay, P. Energy Environ. Sci. 2011, 4, 114.
(c) Wang, M.; Chen, L.; Sun, L. Energy Environ. Sci. 2012, 5,
6763.
(2) (a) Hydrosilyaltion: A Comprehensive Review on Recent Adꢀ
vances, Marciniec, B. Ed.; Springer, 2009. (b) Roy, A. K. Adv.
Organomet. Chem. 2008, 55, 1. (c) Herzig, C. J. in: Auner, N.;
Weis, J. (Eds.), Organosilicon Chemistry, VCH, Weinheim
1994, pp. 253.
(3) (a) Lim, D. S. W.; Anderson, E. A. Synthesis 2012, 44, 983. (b)
Langkopf, E.; Schinzer, D. Chem. Rev. 1995, 95, 1375.
(4) (a) Bart, S. C.; Lobkovsky, E.; Chirik, P. J. J. Am. Chem. Soc.
2004, 126, 13794. (b) Belger, C.; Plietker, B. Chem. Commun.
2012, 48, 5419.
(5) (a) Isobe, M.; Nishizawa, R.; Nishikawa, T.; Yoza, K. Tetraheꢀ
dron lett. 1999, 40, 6927. (b) Huang, K.ꢀH.; Isobe, M. Eur. J.
Org. Chem. 2014, 4733. (c) Yong, L.; Kirleis, K.; Butenschön,
H. Adv. Synth. Catal. 2006, 348, 833. (d) Konno, T.; Taku, K.;
Yamada, S.; Moriyasu, K.; Ishihara, T. Org. Biomol. Chem.
2009, 7, 1167.
(21) Markó et al. has developed similar model for his PtꢀNHC cataꢀ
lyzed hydrosilylation reactions. For reference, see: Bo, G. D.;
BerthonꢀGellzo, G.; Tinant, B.; Markó, I. E. Organometallics
2006, 25, 1881.
(22) The possible interaction between the SiꢀH bond and the cobalt
center in intermediate 5 that might prevent the isomerization of
vinyl cobalt intermediates via CrabtreeꢀOjima mechanism to
form transꢀadduct might be another important factor contribꢀ
uting to the high selectivity of the catalytic system. For Crabtreeꢀ
Ojima mechanism, please see: (a) Jun, C.ꢀH.; Crabtree, R. H. J.
Organomet. Chem. 1993, 447, 177. (b) Ojima, I.; Clos, N.; Doꢀ
novan, R. J.; Ingallina, P. Organometallics 1990, 9, 3127.
(6) (a) Bartik, T.; Nagy, G.; Kvintovics, P.; Happ, B. J. Organomet.
Chem. 1993, 453, 29. (b) Tillack, A.; Pulst, S.; Baumann, W.;
Baudisch, H.; Kortus, K.; Rosenthal, U. J. Organomet. Chem.
1997, 532, 117. (c) Chaulagain, M. R.; Mahandru, G. M.;
Montgomery, J. Tetrahedron 2006, 62, 7560. (d) Berding, J.;
van Paridon, J. A.; van Rixel, V. H. S.; Bouwman, E. Eur. J. Inꢀ
org. Chem. 2011, 2450.
ACS Paragon Plus Environment