Journal of Materials Chemistry A
Paper
13 H. Zhang, P. An, W. Zhou, B. Y. Guan, P. Zhang, J. Dong and
X. W. Lou, Sci. Adv., 2018, 4, eaao6657.
Conclusions
14 S. Back and Y. Jung, ACS Energy Lett., 2017, 2, 969–975.
15 H. B. Yang, S.-F. Hung, S. Liu, K. Yuan, S. Miao, L. Zhang,
X. Huang, H.-Y. Wang, W. Cai, R. Chen, J. Gao, X. Yang,
W. Chen, Y. Huang, H. M. Chen, C. M. Li, T. Zhang and
B. Liu, Nat. Energy, 2018, 3, 140–147.
16 Y. Cheng, S. Zhao, B. Johannessen, J.-P. Veder, M. Saunders,
M. R. Rowles, M. Cheng, C. Liu, M. F. Chisholm, R. D. Marco,
H.-M. Cheng, S.-Z. Yang and S. P. Jiang, Adv. Mater., 2018, 30,
1706287.
17 C. Choi, S. Back, N.-Y. Kim, J. Lim, Y.-H. Kim and Y. Jung,
ACS Catal., 2018, 8, 7517–7525.
18 G.-F. Chen, X. Cao, S. Wu, X. Zeng, L.-X. Ding, M. Zhu and
H. Wang, J. Am. Chem. Soc., 2017, 139, 9771–9774.
19 M.-M. Shi, D. Bao, B.-R. Wu, Y.-H. Li, Y.-F. Zhang, J.-M. Yan
and Q. Jiang, Adv. Mater., 2017, 29, 1606550.
In summary, Fe1-N-C with atomically dispersed Fe has been
successfully constructed by rational control over the distance of
adjacent Fe atoms in a porphyrinic MOF. Thanks to the single-
atom Fe sites (excellent performance for the NRR) and hierar-
chically porous structure (accessibility of active sites), Fe1-N-C
has a superior NRR performance with an NH3 yield rate of
1.56 ꢀ 10ꢁ11 mol cmꢁ2 sꢁ1 and a FE of 4.51% at ꢁ0.05 V vs.
RHE, which surpass those of Co1-N-C and Ni1-N-C. DFT calcu-
lations reveal that the RDS of Fe1-N-C toward the NRR shows
a much lower energy barrier than that of Co and Ni counter-
parts, explaining the much better performance of Fe1-N-C
theoretically. This work offers a guideline for the construction
of outstanding SACs for the NRR and provides insightful
understanding of the related catalytic mechanism.
20 L. Zhang, X. Ji, X. Ren, Y. Ma, X. Shi, Z. Tian, A. M. Asiri,
L. Chen, B. Tang and X. Sun, Adv. Mater., 2018, 30, 1800191.
21 C. Lv, C. Yan, G. Chen, Y. Ding, J. Sun, Y. Zhou and G. Yu,
Angew. Chem., Int. Ed., 2018, 57, 6073–6076.
Conflicts of interest
There are no conicts to declare.
22 Y. Yao, S. Zhu, H. Wang, H. Li and M. Shao, J. Am. Chem. Soc.,
2018, 140, 1496–1501.
23 Y. Liu, Y. Su, X. Quan, X. Fan, S. Chen, H. Yu, H. Zhao,
Y. Zhang and J. Zhao, ACS Catal., 2018, 8, 1186–1191.
24 X. Yu, P. Han, Z. Wei, L. Huang, Z. Gu, S. Peng, J. Ma and
G. Zheng, Joule, 2018, 2, 1610–1622.
25 Y. Wang, X. Cui, J. Zhao, G. Jia, L. Gu, Q. Zhang, L. Meng,
Z. Shi, L. Zheng, C. Wang, Z. Zhang and W. Zheng, ACS
Catal., 2019, 9, 336–344.
Acknowledgements
This work is supported by the NSFC (21725101, 21871244 and
21521001), the Fundamental Research Funds for the Central
Universities (WK2060030029) and the China Postdoctoral
Science Foundation (2019TQ0298). We appreciate the support
of the 1W1B XAFS beamline of BSRF and the Supercomputing
Center of USTC.
26 L. Han, X. Liu, J. Chen, R. Lin, H. Liu, F. Lv, S. Bak, Z. Liang,
S. Zhao, E. Stavitski, J. Luo, R. R. Adzic and H. L. Xin, Angew.
Chem., Int. Ed., 2019, 58, 2321–2325.
Notes and references
1 A. Wang, J. Li and T. Zhang, Nat. Rev. Chem., 2018, 2, 65–81. 27 M. Wang, S. Liu, T. Qian, J. Liu, J. Zhou, H. Ji, J. Xiong,
2 L. Liu and A. Corma, Chem. Rev., 2018, 118, 4981–5079.
3 J. Liu, ACS Catal., 2017, 7, 34–59.
J. Zhong and C. Yan, Nat. Commun., 2019, 10, 341.
28 J. S. Anderson, J. Rittle and J. C. Peters, Nature, 2013, 501, 84–
4 P. Liu, Y. Zhao, R. Qin, S. Mo, G. Chen, L. Gu, D. M. Chevrier,
87.
P. Zhang, Q. Guo, D. Zang, B. Wu, G. Fu and N. Zheng, 29 J.-C. Liu, X.-L. Ma, Y. Li, Y.-G. Wang, H. Xiao and J. Li, Nat.
Science, 2016, 352, 797–800. Commun., 2018, 9, 1610.
5 X. Cui, H. Li, Y. Wang, Y. Hu, L. Hua, H. Li, X. Han, Q. Liu, 30 X. Cui, C. Tang and Q. Zhang, Adv. Energy Mater., 2018, 8,
F. Yang, L. He, X. Chen, Q. Li, J. Xiao, D. Deng and X. Bao,
Chem, 2018, 4, 1902–1910.
1800369.
´
´
´
31 A. J. Martın, T. Shinagawa and J. Perez-Ramırez, Chem, 2019,
6 L. Fan, P. F. Liu, X. Yan, L. Gu, Z. Z. Yang, H. G. Yang, S. Qiu
and X. Yao, Nat. Commun., 2016, 7, 10667.
7 N. Cheng, S. Stambula, D. Wang, M. N. Banis, J. Liu, A. Riese,
5, 263–283.
32 N. Lehnert, H. T. Dong, J. B. Harland, A. P. Hunt and
C. J. White, Nat. Rev. Chem., 2018, 2, 278–289.
B. Xiao, R. Li, T.-K. Sham, L.-M. Liu, G. A. Botton and X. Sun, 33 S. L. Foster, S. I. P. Bakovic, R. D. Duda, S. Maheshwari,
Nat. Commun., 2016, 7, 13638.
8 C. Zhu, S. Fu, Q. Shi, D. Du and Y. Lin, Angew. Chem., Int. Ed.,
2017, 56, 13944–13960.
R. D. Milton, S. D. Minteer, M. J. Janik, J. N. Renner and
L. F. Greenlee, Nat. Catal., 2018, 1, 490–500.
34 F. Jiao and B. Xu, Adv. Mater., 2019, 31, 1805173.
9 H. Xu, D. Cheng, D. Cao and X. C. Zeng, Nat. Catal., 2018, 1, 35 C. Guo, J. Ran, A. Vasileff and S.-Z. Qiao, Energy Environ. Sci.,
339–348.
2018, 11, 45–56.
10 H. Zhang, G. Liu, L. Shi and J. Ye, Adv. Energy Mater., 2018, 8, 36 F. Lu, S. Zhao, R. Guo, J. He, X. Peng, H. Bao, J. Fu, L. Han,
¨
1701343.
G. Qi, J. Luo, X. Tang and X. Liu, Nano Energy, 2019, 61, 420–
11 L. Zhang, Y. Jia, G. Gao, X. Yan, N. Chen, J. Chen, M. T. Soo,
427.
¨
B. Wood, D. Yang, A. Du and X. Yao, Chem, 2018, 4, 285–297. 37 Y. Qiu, X. Peng, F. Lu, Y. Mi, L. Zhuo, J. Ren, X. Liu and
12 G. Wan, X.-M. Lin, J. Wen, W. Zhao, L. Pan, J. Tian, T. Li,
J. Luo, Chem.–Asian J., 2019, 14, 2770–2779.
H. Chen and J. Shi, Chem. Mater., 2018, 30, 7494–7502.
26376 | J. Mater. Chem. A, 2019, 7, 26371–26377
This journal is © The Royal Society of Chemistry 2019