Page 5 of 6
Chemical Science
Please do not adjust margins
Journal Name
ARTICLE
Acknowledgements
We thank the Ministry of Defence (R279-D0O0I0: -1304.1003-29/3C26)S,CS0M00A5R5TJ
(R279-000-378-592), the Ministry of Education (R279-000-391-
112), Singapore NRF Investigatorship (R279-000-444-281) and
the Institute of Materials Research and Engineering of
Singapore (IMRE/14-8P1110) for financial support.
References
1
(a) M. I. J. Stich, L. H. Fischer, O. S. Wolfbeis, Chem. Soc. Rev.
2010, 39, 3102-3114; (b) Z. G. Yang, J. F. Cao, Y. X. He, J. H.
Yang, T. Kim, X. J. Peng, J. S. Kim, Chem. Soc. Rev. 2014, 43
,
4563-4601; (c) J. Zheng, R. H. Yang, M. L. Shi, C. C. Wu, X. H.
Fang, Y. H. Li, J. H. Li, W. H. Tan, Chem. Soc. Rev. 2015, 44
,
3036-3055.
2
3
4
5
6
J. Chan, S. C. Dodani, C. J. Chang, Nat. Chem. 2012, 4, 973-
984.
J. J. Li, F. F. Cheng, H. P. Huang, L. L. Li, J. J. Zhu, Chem. Soc.
Rev. 2015, 44, 7855-7880.
K. E. Sapsford, L. Berti, I. L. Medintz, Angew. Chem. Int. Ed.
2006, 45, 4562-4588.
D. E. Lee, H. Koo, I. C. Sun, J. H. Ryu, K. Kim, I. C. Kwon, Chem.
Soc. Rev. 2012, 41, 2656-2672.
Figure 5. Confocal images of Cou-DEVD-TPETP (10 μM)
incubated HeLa cells upon treatment with (A) sodium
ascorbate (Na Asc), (B) cisplatin, (C) DOX and (D) STS. Green
fluorescence (Cou-DEVD, Ex: 405 nm; Em: 505-525 nm); orange
fluorescence (nucleus dyed with SYTO® orange, Ex: 543 nm, Em:
610-640 nm); A1-D1 are the overlay images of the
fluorescence of Cou and SYTO® orange; red fluorescence
(TPETP residue, A2-D2, Ex: 405 nm, Em: > 650 nm). (E) PL
intensities of Cou-DEVD and TPETP residue in HeLa cells
treated with of Na Asc, cisplatin, DOX and STS at different
concentrations.
(a) B. E. Rolfe, I. Blakey, O. Squires, H. Peng, N. R. B. Boase, C.
Alexander, P. G. Parsons, G. M. Boyle, A. K. Whittaker, K. J.
Thurecht, J. Am. Chem. Soc. 2014, 136, 2413−2419; (b) V. S. R.
Harrison, C. E. Carney, K. W. MacRenaris, E. A. Waters, T. J.
Meade, J. Am. Chem. Soc., 2015, 137, 9108–9116; (c) Y. Sun,
X. W. Ma, K. Cheng, B. Y. Wu, J. L. Duan, H. Chen, L. H. Bu, R.
P. Zhang, X. M. Hu, Z. X. Deng, L. Xing, X. C. Hong, Z. Cheng,
Angew. Chem. Int. Ed. 2015, 54, 5981–5984 (d) Y. H. Wang, S.
Y. Song, J, H. Liu, D. P. Liu, H. J. Zhang, Angew. Chem. Int. Ed.
2015, 54, 536–540; (e) X. J. Wu, B. J. Lin, M. Z. Yu, L. Yang, J.
H. Han, S. F. Han, Chem. Sci. 2015,
Q. Cheng, S. Yuan, J. C. Qian, K. Zhong, Y. F. Qian, Y. Z. Liu,
Chem. Sci. 2015, , 6607-6613.
6, 2002-2009; (f) Q. Wu,
6
Conclusions
7
(a) J. Mei, N. L. C. Leung, R. T. K. Kwok, J. W. Y. Lam, B. Z.
Tang, Chem. Rev. 2015, 115, 11718-11940; (b) W. J. Guan, W.
J. Zhou, C. Lu, B. Z. Tang Angew. Chem. Int.
Ed. 2015, 54, 15160-15164; (c) J. Liang, B. Tang, B. Liu, Chem.
Soc. Rev. 2015, 44, 2798-2811; (d) K. Li, B. Liu, Chem. Soc.
Rev. 2014, 43, 6570-6597; (e) X. Zhang, X. Zhang, L. Tao, Z.
In summary, we developed a simple but unique fluorescent
probe with dual signal turn-on for accurate caspase-3
detection with self-validation. Thanks to the unique property
of the AIEgen, the fluorescence of the probe is initially
quenched, but two-signal turn-on is produced upon interaction
with caspase-3 enzyme. The dual-signal turn-on enables real-
time monitoring of caspase-3 activity in solution and in live
cells with high efficiency, which has been utilized for self-
validated enzyme detection and drug screening. Compared to
traditional FRET probes that show single fluorescence turn-on
upon interaction with the analytes, the probe developed in
this work using AIEgen as the energy quencher does not
complicate the probe design, but offers for the first time two-
signal turn-on upon analyte recognition. In addition, this is the
first time that the energy quencher could change its role to a
signal reporter upon analyte recognition. Our design strategy
of AIEgen based FRET probe can be generalized to other
probes simply by changing DEVD to other cleavable substrate,
which will open new avenues for self-validated diagnosis,
imaging and drug screening applications. Potential translation
would still be needed to evaluate the in vivo cytotocity and
design probes with longer absorption wavelength.
Chi, J. Xu, Y. Wei, J. Mater. Chem. B 2014, 2, 4398-4414; (f) Q.
L. Hu, M. Gao, G. X. Feng, B. Liu, Angew. Chem. Int. Ed. 2014,
53, 14225-14229; (g) Y. Yuan, R. T. Kwok, B. Z. Tang, B. Liu, J.
Am. Chem. Soc. 2014, 136, 2546-2554; (h) S. Xu, Y. Yuan, X.
Cai, C. Zhang, F. Hu, J. Liang, G. Zhang, D. Zhang, B. Liu. Chem.
Sci. 2015, 6, 5824-5830; (i) X. D. Xue, Y. Y. Zhao, L. R. Dai, X.
Zhang, X. H. Hao, C. Q. Zhang, S. D. Huo, J. Liu, C. Liu, A.
Kumar, W. Q. Chen, G. Z. Zou, X. J. Liang, Adv. Mater. 2014,
26, 712-717; (j) Y. Y. Yuan, C. J. Zhang, M. Gao, R. Y. Zhang, B.
Z. Tang, B. Liu, Angew. Chem. Int. Ed. 2015, 54, 1780-1786; (k)
A. D. Shao, Y. S. Xie, S. J. Zhu, Z. Q. Guo, S. Q. Zhu, J. Guo, P.
Shi, T. D. James, H. Tian, W. H. Zhu, Angew. Chem. Int. Ed.
2015, 54, 7275-7280; (l) Z. Xie, C. Chen, S. Xu, J. Li, Y. Zhang, S.
Liu, J. Xu, Z. Chi, Angew. Chem. Int. Ed. 2015, 54, 7181-7184.
J. B. Birks, Photophysics of Aromatic Molecules; Wiley:
London, 1970.
8
9
Y. N. Hong, J. W. Y. Lam, B. Z. Tang, Chem. Soc. Rev. 2011, 40
,
5361-5388.
10 (a) K. Boeneman, B. C. Mei, A. M. Dennis, G. Bao, J. R.
Deschamps, H. Mattoussi, I. L. Medintz, J. Am. Chem. Soc.
2009, 131, 3828-3829; (b) J. F. Lovell, M. W. Chan, Q. C. Qi, J.
Chen, G. Zheng, J. Am. Chem. Soc. 2011, 133, 18580–18582;
(c) L. Zhang, J. P. Lei, J. T. Liu, F. J. Ma, H. X. Ju, Chem. Sci.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 5
Please do not adjust margins