1788 J. Phys. Chem. A, Vol. 102, No. 10, 1998
Sehested et al.
Figure 9 is drawn at k2/k3 ) 2.17 which is the average of the
data reported by Cox et al.,35 Kirchner et al.,37 Tuazon et al.,30
Seefeld et al.,39 and the present study. The two dashed lines
represent changes in k2/k3 by (15% and encompass most of
the experimental data.
In models of urban and regional air chemistry the rate-
constant ratio k2/k3 is an important parameter that determines
the formation of PAN. We recommend the use of a tempera-
ture-independent value of k2/k3 ) 2.17 ( 0.33 in such models.
Although the rate-constant k3 is pressure-dependent, for pres-
sures near ambient the effect is modest with k3 changing by
less than 5% as the pressure is reduced from 700 to 300 Torr
at 298 K. Hence, neglecting the effect of pressure on k2/k3 in
urban and regional air-quality models is reasonable.
Acknowledgment. J.S. and O.J.N. thank the Commission
of the European Communities for financial support. NCAR is
partially supported by the National Science Foundation.
References and Notes
Figure 9. Comparison of literature data for k2/k3 at, or near, ambient
pressure with results from the present work: Cox et al.35 (diamond),
Kenley and Hendry38 (dotted line), Kirchner et al.37 (triangles), Tuazon
et al.30 (squares), Seefeld et al.39 (open circles), this work (filled circles).
The solid line is drawn at k2/k3 ) 2.17. The dashed line represent (15%.
(1) Moortgat, G. K.; Veyret, B.; Lesclaux, R. J. Phys. Chem. 1989,
93, 2362.
(2) Moortgat, G. K.; Veyret, B.; Lesclaux, R. Chem. Phys. Lett. 1989,
160, 443.
(3) Roehl, C. M.; Bauer, D.; Moortgat, G. K. J. Phys. Chem. 1996,
100, 4038.
(1.4 ( 0.2) × 10-11 cm3 molecule-1 s-1, respectively. Our
value of k2 ) (2.0 ( 0.3) × 10-11 cm3 molecule-1 s-1 clearly
supports the work of Villalta and Howard. Maricq and Szente10
measured the formation of NO2 and the loss of NO using IR
and the formation and decay of CH3C(O)O2, CH3O2, and CH3-
ONO using UV absorption. The experimental data were fitted
using a complex mechanism; hence, the value of the rate-
constant is obtained less directly than that of Villalta and
Howard but in a way very similar to the work reported here.
The origin of the discrepancy between the results of Maricq
and Szente10 and that measured here and by Villalta and
Howard11 is unknown.
(4) Villenave, E.; Lesclaux, R. J. Phys. Chem. 1996, 100, 14372.
(5) Bridier, I.; Caralp, F.; Loirat, H.; Lesclaux, R.; Veyret, B.; Becker,
K. H.; Reimer, A.; Zabel, F. J. Phys. Chem. 1991, 95, 3594.
(6) Addison, M. C.; Burrows, J. P.; Cox, R. A.; Patrick, R. Chem. Phys.
Lett. 1980, 73, 283.
(7) Basco, N.; Parmar, S. Int. J. Chem. Kinet. 1987, 19, 115.
(8) Lightfoot, P. D.; Cox, R. A.; Crowley, J. N.; Destriau, M.; Hayman,
G. D.; Jenkin, M. E.; Moortgat, G. K.; Zabel, F. Atmos. EnViron. 1992, 26,
1805.
(9) Wallington, T. J.; Dagaut, P.; Kurylo, M. J. Chem. ReV. 1992, 92,
667.
(10) Maricq, M. M.; Szente, J. J. J. Phys. Chem. 1996, 100, 12380.
(11) Villalta, P. W.; Howard, C. J. J. Phys. Chem. 1996, 100, 13624.
(12) Hansen, K. B.; Wilbrandt, R.; Pagsberg, P. ReV. Sci. Instrum. 1979,
50, 1532.
(13) Sehested, J. Risø-R-804, 1994.
Bridier et al.5 determined a value for k3 of 9.6 × 10-12 cm3
molecule-1 s-1 at 1 bar total pressure and a high-pressure limit
of (1.2 ( 0.2) × 10-11 cm3 molecule-1 s-1. k2 was determined
at 1 bar total pressure of SF6 or CO2 in this work. SF6 and
CO2 are generally more efficient third bodies than air, and it is
expected from the results of Bridier et al.5 that the value of k3
determined here should lie between 0.96 and 1.2 × 10-11 cm3
molecule-1 s-1. This prediction is in excellent agreement with
k3 ) (1.0 ( 0.2) × 10-11 cm3 molecule-1 s-1 obtained here.
The rate-constant values of Addison et al.6 and Basco and
Parmar7 fall below those obtained here and the values of Bridier
et al. As discussed elsewhere,8,9 the chemical mechanism used
in the data analysis of Bridier et al.5 was more complete than
those used by Addison et al.6 and Basco and Parmer.7 Hence,
the results of Bridier et al. are to be preferred. As seen in Figure
8, the results from the present study are in excellent agreement
with those of Bridier et al.5
There have been six previous measurements of the rate-
constant ratio k2/k3 at, or near, atmospheric pressure (Cox et
al.,35 Cox and Roffey,36 Kirchner et al.,37 Tuazon et al.,30 Kenley
and Hendry,38 and Seefeld et al.39). Data from these previous
studies are compared with the results from the present work in
Figure 9. The data from Cox and Roffey36 have a high degree
of scatter with values ranging from 1.2 to 3.0 and are not
included in the plot. All studies have concluded that the rate-
constant ratio k2/k3 is independent of temperature. With the
exception of the study of Hendry and Kenley38 there is also
broad agreement on the magnitude of k2/k3. The solid line in
(14) Wallington, T. J.; Japar, S. M. J. Atmos. Chem. 1989, 9, 399.
(15) Shetter, R. E.; Davidson, J. A.; Cantrell, C. A.; Calvert, J. G. ReV.
Sci. Instrum. 1987, 58, 1427.
(16) DeMore, W. B.; Sander, S. P.; Golden, D. M.; Hampson, R. F.;
Kurylo, M. J.; Howard, C. J.; Ravishankara, A. R.; Kolb, C. E.; Molina,
M. J. Jet Propulsion Laboratory Publication, 94-26; Pasadena, CA, 1994.
(17) Davidson, J. A.; Cantrell, C. A.; McDaniel, A. H.; Shetter, R. E.;
Madronich, S.; Calvert, J. G. J. Geophys. Res. 1988, 93, 7105.
(18) Schneider, W.; Moortgat, G. K.; Tyndall, G. S.; Burrows, J. P. J.
Photochem. Photobiol. 1987, 40, 195.
(19) Me´rienne, M. F.; Jenouvrier, A.; Coquart, B. J. Atmos. Chem. 1995,
20, 281.
(20) Tsalkani, N.; Toupance, G. Atmos. EnViron. 1989, 23, 1849.
(21) Finlayson-Pitts, B. J.; Pitts, J. J. N. Atmospheric Chemistry; John
Wiley & Sons: New York, 1986.
(22) Atkinson, R.; Baulch, D. L.; Cox, R. A.; Hampson, R. F.; Kerr, J.
A.; Troe, J. J. Phys. Chem. Ref. Data 1992, 21, 1125.
(23) Eberhard, J.; Howard, C. J. J. Phys. Chem. 1997, 101, 3360.
(24) Sehested, J.; Nielsen, O. J.; Wallington, T. J. Chem. Phys. Lett.
1993, 213, 257.
(25) Sehested, J.; Nielson, O. J.; Egsgaard, H.; Larsen, N. W.; Pedersen,
T.; Christensen, L. K.; Wiegell, M. J. Geophys. Res. 1995, 100, 20979.
(26) Tyndall, G. S.; Orlando, J. J.; Wallington, T. J.; Hurley, M. D. Int.
J. Chem. Kinet. 1997, 29, 655.
(27) Sehested, J.; Christensen, L. K.; Nielsen, O. J.; Bilde, M.;
Wallington, T. J.; Schneider, W. F.; Orlando, J. J.; Tyndall, G. S. Int. J.
Chem. Kinet., in press.
(28) Sehested, J.; Christensen, L. K.; Nielsen, O. J.; Wallington, T. J.
Int. J. Chem. Kinet., submitted.
(29) Orlando, J. J.; Tyndall, G. S.; Calvert, J. G. Atmos. EnViron. 1992,
26A, 3111.
(30) Tuazon, E. C.; Carter, W. P. L.; Atkinson, R. J. Phys. Chem. 1991,
95, 2434.
(31) Roberts, J. M.; Bertman, S. B. Int. J. Chem. Kinet. 1992, 24, 297.
(32) Roumelis, N.; Glavas, S. Monatsh. Chem. 1992, 123, 63.