Communication
ChemComm
which suggests that the oxyethylene chains of one molecule
presumably wrap around the NDI core of the adjacent molecule
of 2 (Fig. 4c). The bending of the oxyethylene chains during the
wrapping may eventually reduce the effective length of 2.
Further, tilting of the molecular alignment in the lamellae may
account for the observed layered thickness in the gel. Therefore the
conclusion drawn from the ROESY NMR experiment was further
verified by XRD studies. On the other hand, unlike 1 in the bulk,
complex 2 did not display any LC behavior as it decomposed upon
heating at B220 1C under a POM (Fig. S12, ESI†).
In summary, we demonstrated the synthesis of a novel
asymmetric bolaamphiphilic NDI derivative, 1, capable of
showing a thermotropic nematic LC phase in the bulk. 1 also
formed a stable gel in EtOH. Further, we synthesized a novel
metal–ligand discrete complex (2) in nearly quantitative yield by
5 (a) R. G. Weiss, J. Am. Chem. Soc., 2014, 136, 7519; (b) A. R. Hirst,
B. Escuder, J. F. Miravet and D. K. Smith, Angew. Chem., Int. Ed., 2008,
4
7, 8002; (c) K. Maeda, H. Mochizuki, K. Osato and E. Yashima, Macro-
molecules, 2011, 44, 3217; (d) T. Aida, E. W. Meijer and S. I. Stupp, Science,
2012, 335, 813; (e) M. Fleischer and C. Schmuck, Chem. Commun., 2014,
5
0, 10464; ( f ) Q. Liu, M. Zhao, S. Mytnyk, B. Klemm, K. Zhang, Y. Wang,
D. Yan, E. Mendes and J. H. van Esch, Angew. Chem., Int. Ed., 2019,
8, 547; (g) S. Bhattacharjee and S. Bhattacharya, J. Mater. Chem. A, 2014,
2, 17889; (h) D. Bhagat, S. K. Samanta and S. Bhattacharya, Sci. Rep., 2013,
, 1294; (i) N. Dey, S. K. Samanta and S. Bhattacharya, ACS Appl. Mater.
5
3
Interfaces, 2013, 5, 8394; ( j) S. K. Samanta, K. S. Subrahmanyam,
S. Bhattacharya and C. N. R. Rao, Chem. – Eur. J., 2012, 18, 2890.
6 (a) B. Xing, M. F. Choi, Z. Zhou and B. Xu, Langmuir, 2002, 18, 9654;
(
b) M. J. Mayoral, C. Rest, V. Stepanenko, J. Schellheimer, R. Q.
Albuquerque and G. Fern ´a ndez, J. Am. Chem. Soc., 2013, 135, 2148;
c) C. Rest, M. J. Mayoral, K. Fucke, J. Schellheimer, V. Stepanenko
(
and G. Fern ´a ndez, Angew. Chem., Int. Ed., 2014, 53, 700; (d) Y. Liu,
T. Wang, Z. Li and M. Liu, Chem. Commun., 2013, 49, 4767;
(
e) E. Noh, S. Park, S. Kang, J. Y. Lee and J. H. Jung, Chem. – Eur.
J., 2013, 19, 2620; ( f ) S. Bhowmik, B. N. Ghosh, V. Marjom ¨a ki and
K. Rissanen, J. Am. Chem. Soc., 2014, 136, 5543; (g) B. N. Ghosh,
S. Bhowmik, P. Mal and K. Rissanen, Chem. Commun., 2014, 50, 734;
reacting an equimolar amount of 1 and PdCl
2
(PhCN)
2
. Complex
through
2
was found to yield a stable gel in DCM or in CHCl
3
(
4
h) Y. He, Z. Bian, C. Kang and L. Gao, Chem. Commun., 2011,
7, 1589; (i) J. M. J. Paulusse, D. J. M. van Beek and R. P. Sijbesma,
the formation of nanowires of high aspect ratio. The formation
of relatively high aspect ratio fibers/nanowires by the metallo-
gelators relative to the low aspect ratio fibers of 1 (although
in a different solvent) clearly explained the lower CGC value
of the metallogel (CGC: 3.8 mM) compared to the gel of 1
J. Am. Chem. Soc., 2007, 129, 2392; ( j) B. Maiti, S. Bhattacharjee and
S. Bhattacharya, Nanoscale, 2019, 11, 2223; (k) S. Bhattacharjee and
S. Bhattacharya, Chem. Commun., 2014, 50, 11690.
(a) M. O. M. Piepenbrock, G. O. Lloyd, N. Clarke and J. W. Steed,
Chem. Rev., 2010, 110, 1960; (b) A. Y. Tam and V. W. Yam, Chem. Soc.
Rev., 2013, 42, 1540; (c) J. H. Jung, J. H. Lee, J. R. Silverman and
G. John, Chem. Soc. Rev., 2013, 42, 924; (d) P. K. Vemula, U. Aslam,
V. A. Mallia and G. John, Chem. Mater., 2007, 19(2), 138; (e) N. Malviya,
C. Sonkar, B. K. Kundu and S. Mukhopadhyay, Langmuir, 2018,
7
8
(CGC: 10.4 mM). Therefore, the discrete metal complex of 1
showed an enhanced ability to self-assemble compared with the
molecule of 1 alone. Further studies including the preparation
of NDI based metallogels in aqueous medium with nascent
potential are underway.
3
4, 11575; ( f ) J. Huang, L. He, J. Zhang, L. Chen and C.-Y. Su, J. Mol.
Catal. A: Chem., 2010, 317, 97; (g) S. R. Bull, M. O. Guler, R. E. Bras,
T. J. Meade and S. I. Stupp, Nano Lett., 2005, 5, 1.
(a) M. M. Abdelkader and M. Abdelmohsen, Mater. Res. Express,
2
018, 6, 025608; (b) L. Xin, Z. Zhang, M. A. Carpenter, M. Zhang,
F. Jin, Q. Zhang, X. Wang, W. Tang and X. Lou, Adv. Funct. Mater.,
018, 28, 1806013; (c) Y. Zhang, W.-Q. Liao, D.-W. Fu, H.-Y. Ye,
C.-M. Liu, Z.-N. Chen and R.-G. Xiong, Adv. Mater., 2015, 27, 3942;
d) B. Huang, L.-Y. Sun, S.-S. Wang, J.-Y. Zhang, C.-M. Ji, J.-H. Luo,
W.-X. Zhang and X.-M. Chen, Chem. Commun., 2017, 53, 5764.
9 (a) S. V. Bhosale, C. H. Jani and S. J. Langford, Chem. Soc. Rev., 2008,
7, 331; (b) F. W u¨ rthner and M. Stolte, Chem. Commun., 2011,
47, 5109; (c) T. He, M. Stolte and F. W u¨ rthner, Adv. Mater., 2013,
25, 6951; (d) N. Sakai, J. Mareda, E. Vauthey and S. Matile, Chem.
Commun., 2010, 46, 4225; (e) M. A. Kobaisi, S. V. Bhosale, K. Latham,
M. A. Raynor and S. V. Bhosale, Chem. Rev., 2016, 116, 11685;
( f ) N. V. Ghule, R. S. Bhosale, S. V. Bhosale, T. Srikanth, N. V. S.
Rao and S. V. Bhosale, ChemistryOpen, 2018, 7, 61.
Conflicts of interest
2
There are no conflicts to declare.
(
Notes and references
3
1
2
(a) C. Tschierske, Chem. Soc. Rev., 2007, 36, 1930; (b) T. W ¨o hrle,
I. Wurzbach, J. Kirres, A. Kostidou, N. Kapernaum, J. Litterscheidt,
J. C. Haenle, P. Staffeld, A. Baro, F. Giesselmann and S. Laschat,
Chem. Rev., 2016, 116, 1139; (c) T. Kato, Y. Hirai, S. Nakaso and
M. Moriyama, Chem. Soc. Rev., 2007, 36, 1857.
(a) J. W. Goodby, V. G o¨ rtz, S. J. Cowling, G. Mackenzie, P. Martin,
D. Plusquellec, T. Benvegnu, P. Boullanger, D. Lafont, Y. Queneau, 10 (a) S. Basak, J. Nanda and A. Banerjee, Chem. Commun., 2013,
S. Chamberte and J. Fitremann, Chem. Soc. Rev., 2007, 36, 1971;
b) X. Qiao, P. Sun, A. Wu, N. Sun, B. Dong and L. Zheng, Langmuir,
49, 6891; (b) K. Liu, C. Wang, Z. B. Li and X. Zhang, Angew. Chem.,
Int. Ed., 2011, 50, 4952; (c) H. Shao, T. Nguyen, N. C. Romano,
D. A. Modarelli and J. R. Parquette, J. Am. Chem. Soc., 2009,
131, 16374; (d) H. Shao and J. R. Parquette, Chem. Commun., 2010,
46, 4285; (e) M. Kumar and S. J. George, Nanoscale, 2011, 3, 2130;
( f ) A. Das and S. Ghosh, Chem. Commun., 2016, 52, 6860.
(
2
1
019, 35, 1598; (c) S. Datta and S. Bhattacharya, Soft Matter, 2015,
1, 1945.
3
4
(a) L. van ‘t Hag, S. L. Gras, C. E. Conn and C. J. Drummond, Chem.
Soc. Rev., 2017, 46, 2705; (b) J. Zhai, N. Tran, S. Sarkar, C. Fong,
X. Mule and C. J. Drummond, Langmuir, 2017, 33, 2571; (c) Y. Huang 11 S. Ganta and D. K. Chand, Inorg. Chem., 2018, 57, 3634.
and S. Gui, RSC Adv., 2018, 8, 6978.
12 (a) B. V. Roie, J. Leys, K. Denolf, C. Glorieux, G. Pitsi and J. Thoen,
Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2005, 72, 041702;
(b) S. Bhattacharjee, S. K. Samanta, P. Moitra, K. Pramoda, R. Kumar,
S. Bhattacharya and C. N. R. Rao, Chem. – Eur. J., 2015, 21, 5467.
(a) A. S. Tayi, A. Kaeser, M. Matsumoto, T. Aida and S. I. Stupp, Nat.
Chem., 2015, 7, 281; (b) K. Takae and H. Tanaka, Proc. Natl. Acad. Sci.
U. S. A., 2018, 115, 9917; (c) F. Serra, M. Buscaglia and T. Bellini,
Mater. Today, 2011, 14, 488; (d) P. Heremans, G. H. Gelinck, 13 (a) S. Bhattacharjee and S. Bhattacharya, Chem. – Asian J., 2015,
R. Muller, K.-J. Baeg, D.-Y. Kim and Y.-Y. Noh, Chem. Mater., 2011,
3, 341.
10, 572; (b) A. Sikder, A. Das and S. Ghosh, Angew. Chem., Int. Ed.,
2015, 54, 6755.
2
1
2654 | Chem. Commun., 2019, 55, 12651--12654
This journal is ©The Royal Society of Chemistry 2019