718
S.E. Dutton et al. / Materials Research Bulletin 47 (2012) 714–718
experiments are required to further explore the nature of the
magnetic ordering in TbOF.
Our results demonstrate the use of a new solid-state route for
the formation of LnOF by reaction of the rare-earth oxides and
PTFE. By tuning the temperature of reaction, we show that LnOF
can be produced for nearly all of the rare-earth elements.
Furthermore, unlike other synthetic routes, reaction with PTFE
results in the formation of the anion ordered low temperature
rhombohedral phase.
Acknowledgments
The authors would like to acknowledge helpful discussions
with Shuang Jia, Ni Ni, Esteban Climent-Pascual and Collin
Broholm. This research was supported by the U.S. Department
of Energy, Office of Basic Energy Sciences, Division of Materials
Sciences and Engineering under Award DE-FG02-08ER46544.
References
[1] V.I. Klimov, A.A. Mikhailovsky, S. Xu, A. Malko, J.A. Hollingsworth, C.A. Leather-
dale, H.J. Eisler, M.G. Bawendi, Science 290 (2000) 314–317.
[2] J.R. O’Connor, Appl. Phys. Lett. 9 (1966) 407.
[3] G. Blasse, A. Bril, Philips Res. Rep. 23 (1968) 461.
[4] W.D. Horrocks, G.F. Schmidt, D.R. Sudnick, C. Kittrell, R.A. Bernheim, Abstr. Pap.
Am. Chem. Soc. 173 (1977) 36.
[5] Z.Z. Yu, Q.B. Yang, C.F. Xu, Y.X. Liu, Mater. Res. Bull. 44 (2009) 1576–1580.
[6] S. Shen, A. Jha, Opt. Mater. 25 (2004) 321–333.
[7] Y. Wang, J. Ohwaki, Appl. Phys. Lett. 63 (1993) 3268.
[8] D. Barreca, A. Gasparotto, C. Maragno, E. Tondello, E. Bontempi, L.E. Depero, C.
Sada, Chem. Vap. Deposition 11 (2005) 426–432.
[9] Y.-P. Du, Y.-W. Zhang, L.-D. Sun, C.-H. Yan, J. Phys. Chem. C 112 (2007) 405–415.
[10] S. Fujihara, T. Kato, T. Kimura, J. Mater. Sci. Lett. 20 (2001) 687–689.
[11] S. Fujihara, T. Kato, T. Kimura, J. Sol–Gel Sci. Technol. 26 (2003) 953–956.
[12] J. Lee, Q. Zhang, F. Saito, J. Am. Ceram. Soc. 84 (2001) 863–865.
[13] G. Malandrino, L.M.S. Perdicaro, I.L. Fragala, Chem. Vap. Deposition 12 (2006)
736–741.
[14] X. Sun, Y.-W. Zhang, Y.-P. Du, Z.-G. Yan, R. Si, L.-P. You, C.-H. Yan, Chem. – Eur. J. 13
(2007) 2320–2332.
[15] A.P. Ramirez, A. Hayashi, R.J. Cava, R. Siddharthan, B.S. Shastry, Nature 399 (1999)
333–335.
[16] M.J. Harris, S.T. Bramwell, D.F. McMorrow, T. Zeiske, K.W. Godfrey, Phys. Rev. Lett.
79 (1997) 2554–2557.
[17] I. Mirebeau, A. Apetrei, J. Rodriguez Carvajal, P. Bonville, A. Forget, D. Colson, V.
Glazkov, J.P. Sanchez, O. Isnard, E. Suard, Phys. Rev. Lett. 94 (2005) 246402.
[18] J.S. Gardner, S.R. Dunsiger, B.D. Gaulin, M.J.P. Gingras, J.E. Greedan, R.F. Kiefl, M.D.
Lumsden, W.A. MacFarlane, N.P. Raju, J.E. Sonier, I. Swainson, Z. Tun, Phys. Rev.
Lett. 82 (1999) 1012–1015.
[19] L. Beaury, G. Calvarin, J. Derouet, J. Ho¨lsa¨, E. Sa¨ilynoja, J. Alloys Compd. 275–277
(1998) 646–650.
[20] L. Beaury, J. Derouet, J. Ho¨lsa¨, M. Lastusaari, J. Rodriguez-Carvajal, Solid State Sci. 4
(2002) 1039–1043.
[21] T. Petzel, V. Marx, B. Hormann, J. Alloys Compd. 200 (1993) 27–31.
[22] K. Niihara, S. Yajima, Bull. Chem. Soc. Jpn. 44 (1971) 643.
[23] D.B. Shinn, H.A. Eick, Inorg. Chem. 8 (1969) 232–235.
[24] N.C. Baenziger, J.R. Holden, G.E. Knudson, A.I. Popov, J. Am. Chem. Soc. 76 (1954)
4734–4735.
[25] H.M. Rietveld, J. Appl. Crystallogr. 2 (1969) 65–71.
´
[26] J. Rodrıguez-Carvajal, Phys. B: Condens. Matter 192 (1993) 55–69.
[27] P. Scherrer, Nachr. Go¨tt. 2 (1918) 98.
Fig. 4. (a) Magnetic susceptibility, x, as a function of temperature for TbOF. Both
[28] N.C. Popa, J. Appl. Crystallogr. 31 (1998) 176–180.
the ZFC and FC magnetic susceptibility is show, the inverse susceptibility is inset.
[29] N.C. Popa, D. Balzar, J. Appl. Crystallogr. 41 (2008) 615–627.
[30] W.H. Zachariasen, Acta Crystallogr. 4 (1951) 231.
[31] F. Hund, Z. Anorg. Allg. Chem. 265 (1951) 62.
(b) Isothermal magnetization of TbOF at 2 K, 8 K and 12 K, dM/dm0H is shown in
panel (c).
[32] A. Grill, M. Schieber, Phys. Rev. B 1 (1970) 2241.
[33] S. Kern, R. Kostelecky, J. Appl. Phys. 42 (1971) 1773.
[34] B. Antic, M. Mitric, D. Rodic, J. Phys.: Condens. Matter 9 (1997) 365.
[35] S. Arajas, R.V. Colvin, J. Appl. Phys. 35 (1963) 1181.
[36] E. Morosan, J.A. Fleitman, Q. Huang, J.W. Lynn, Y. Chen, X. Ke, M.L. Dahlberg, P.
Schiffer, C.R. Craley, R.J. Cava, Phys. Rev. B 77 (2008) 224423.
[37] L. Holmes, H.J. Guggenheim, G.W. Hull, Solid State Commun. 8 (1970) 2005.
[38] L. Holmes, H.J. Guggenheim, J. Phys. 32 (1971) C1 501.
[39] M. Piotrowski, A. Murasik, Phys. Status Solidi A-Appl. Res. 60 (1980) K195–K199.
field undergoes spin-reorientation to a FM-like ordering above 1.8 T
[37,38]. Similar behavior has previously been reported in ortho-
rhombic TbF3, which orders at 3.95 K [39]. In TbF3, the Tb3+, 4f8, ions
can be treated as using spins displaying canted AFM order at low
fields before undergoing a spin-flip transition at 1.3 T to a canted FM
state. Further experiments on single crystals or neutron diffraction