LETTER
Synthesis of Substituted Phenanthrenes via Intramolecular Condensation
3229
The reaction conditions were successfully applied on sub-
strates bearing different types of challenging substituents,
and additionally as an example of the applicability of our
new protocol in heterocyclic chemistry a 11H-ben-
zo[a]carbazole was synthesized.
Acknowledgment
We are grateful to the ‘Fund for Scientific Research Flanders’ (re-
search grant 1.5.088.04), the University of Antwerp and the Hunga-
rian National Office for Research and Technology for financial
support.
Figure 1
References and Notes
microwave heating. For an experimental set-up to compare
reactions under conventional (oil bath) and microwave
heating, see: Hostyn, S.; Maes, B. U. W.; Van Baelen, G.;
Gulevskaya, A.; Meyers, C.; Smits, K. Tetrahedron 2006,
(
1) de Koning, C. B.; Michael, J. P.; Rousseau, A. L.
Tetrahedron Lett. 1998, 39, 8725.
(
2) Pathak, R.; Vandayar, K.; van Otterlo, W. A. L.; Michael, J.
P.; Fernandes, M. A.; de Koning, C. B. Org. Biomol. Chem.
6
2, 4676.
28) Gronowitz, S.; Bobosik, V.; Lawitz, K. Chem. Scr. 1984, 23,
20.
29) General Procedure for the Synthesis of Phenanthrenes
(
(
2004, 2, 3504.
1
(
(
3) Hassan, J.; Sevignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M.
Chem. Rev. 2002, 102, 1359.
4) Li, J. J.; Gribble, G. W. Palladium in Heterocyclic
Chemistry; Pergamon: Amsterdam, 2000.
3a–g and 11-Methyl-11H-benzo[a]carbazole (6): An
80-mL Greenchem vessel was charged with biphenyl
compound 2a–g (0.75 mmol), Cs CO (3 mmol) and anhyd
2
3
(
(
5) Iuliano, A.; Piccioli, P.; Fabbri, D. Org. Lett. 2004, 6, 3711.
6) Walker, E. R.; Leung, S. Y.; Barrett, A. G. M. Tetrahedron
Lett. 2005, 46, 6537.
DMF (5 mL). The vessel was flushed with argon under
magnetic stirring for a few minutes. Subsequently, the vessel
was sealed and heated to 200 °C in a Mars multi-mode
microwave oven (CEM). The set power was 300 W. The
total irradiation time (including the ramp time to the set
temperature) was 90 min, unless indicated otherwise. After
(
(
(
7) Tovar, J. D.; Swager, T. M. J. Organomet. Chem. 2002, 653,
2
15.
8) Yao, T. L.; Campo, M. A.; Larock, R. C. Org. Lett. 2004, 6,
677.
2
cooling the reaction mixture was poured into H O (100 mL)
2
9) Goldfinger, M. B.; Crawford, K. B.; Swager, T. M. J. Org.
Chem. 1998, 63, 1676.
and was extracted with EtOAc (3 × 100 mL). The combined
organic fractions were dried over MgSO , evaporated to
4
(
(
(
(
(
10) Fürstner, A.; Mamane, V. Chem. Commun. 2003, 2112.
11) Fürstner, A.; Mamane, V. J. Org. Chem. 2002, 67, 6264.
12) Shi, M.; Xu, B. J. Org. Chem. 2002, 67, 294.
13) Jackson, T. J.; Herndon, J. W. Tetrahedron 2001, 57, 3859.
14) Merlic, C. A.; Xu, D. Q.; Gladstone, B. G. J. Org. Chem.
dryness and purified via flash column chromatography on
silica gel.
(
30) It was not possible to reach 200 °C when DME was used as
the solvent. At a temperature of 193 °C the autogenic
pressure rose to the maximum allowed value of 200 psi. The
safety settings of the microwave apparatus stopped
microwave irradiation of the vessel. The reaction mixture
was subsequently held at 193 °C not to exceed 200 psi.
Figure 2 shows the heating profile.
1
993, 58, 538.
15) Merlic, C. A.; Roberts, W. M. Tetrahedron Lett. 1993, 34,
379.
16) Campo, M. A.; Larock, R. C. J. Am. Chem. Soc. 2002, 124,
4326.
17) Mandal, A. B.; Lee, G. H.; Liu, Y. H.; Peng, S. M.; Leung,
M. K. J. Org. Chem. 2000, 65, 332.
18) Larock, R. C.; Doty, M. J.; Tian, Q. P.; Zenner, J. M. J. Org.
Chem. 1997, 62, 7536.
19) Mátyus, P.; Maes, B. U. W.; Riedl, Z.; Hajós, G.; Lemière,
G. L. F.; Tapolcsányi, P.; Monsieurs, K.; Éliás, O.;
Dommisse, R. A.; Krajsovszky, G. Synlett 2004, 1123.
20) Fu, J. M.; Snieckus, V. Can. J. Chem. 2000, 78, 905.
21) Cai, X. W.; Brown, S.; Hodson, P.; Snieckus, V. Can. J.
Chem. 2004, 82, 195.
(
(
(
(
(
7
1
(
(
(22) de Koning, C. B.; Michael, J. P.; Rousseau, A. L. J. Chem.
Soc., Perkin Trans. 1 2000, 787.
(23) Kraus, G. A.; Zhang, N. Tetrahedron Lett. 2002, 43, 9597.
(24) Perrin, D. D. Aust. J. Chem. 1964, 17, 484.
(25) March, J. Advanced Organic Chemistry, 4th ed.; Wiley-
Interscience: New York, 1992, 269.
Figure 2
(
(
31) The isolation of unsubstituted phenanthrene and 3-methyl-
(
(
26) Kappe, C. O. Angew. Chem. Int. Ed. 2004, 43, 6250.
27) Figure 1 shows the heating profiles of a mixture of DMF (5
mL) and Cs CO (3 mmol) in an 80 mL vessel, when heated
phenanthrene was hampered by their volatility. It is possible
that this also contributes to the lower yields obtained for
these compounds.
2
3
by microwave irradiation on one hand and conventional
heating in a preheated oil bath (oil-bath temperature: 220 °C)
on the other hand. It is clear that the mixture reaches the set
temperature of 200 °C considerably faster in the case of
32) General Procedure for the Synthesis of Biphenyls 2a–g:
A two-necked flask was charged with phenylbromide 1a–g,
arylboronic acid (1.5 equiv), Pd(PPh ) (5 mol%), and DME
3 4
Synlett 2006, No. 19, 3225–3230 © Thieme Stuttgart · New York