2776 J. Phys. Chem. A, Vol. 106, No. 11, 2002
Norikane et al.
(3) Arai, T.; Iwasaki, T.; Tokumaru, K. Chem. Lett. 1993, 691.
(4) Lewis, F. D.; Yoon, B. A. J. Org. Chem. 1994, 59, 2537.
(5) Arai, T.; Moriyama, M.; Tokumaru, K. J. Am. Chem. Soc. 1994,
Quantum Yields of Disappearance of trans-2HC. The
sample solutions were irradiated by the same optical system as
described above. The consumption of trans-2HC was estimated
by measuring of the absorbance at 350 and 366 nm. Irradiation
time was controlled so that the isomer yields were within 5%.
Potassium ferroxalate was used as actinometer.
116, 3171.
(6) Lewis, F. D.; Yoon, B. A.; Arai, T.; Iwasaki, T.; Tokumaru, K. J.
Am. Chem. Soc. 1995, 117, 3029.
(7) Arai, T.; Obi, M.; Iwasaki, T.; Tokumaru, K.; Lewis, F. D. J.
Photochem. Photobiol. A: Chem. 1996, 96, 65.
Transient Absorption Spectroscopy. Laser flash photolyses
were performed with 308-nm pulses (XeCl, 10 ns fwhm) from
an excimer laser (Lambda Physik LPX-100) or with 425 nm
pulses (Stilbene 3, 10 ns fwhm) from an excimer laser-pumped
dye laser (Lambda Physik FL-3002). A pulsed xenon arc
(Wacom, KXL-151, 150 W) was used as a monitoring light
source. The detailed setup was described previously.35 Some
of the sample solutions were deaerated by bubbling argon.
Quantum Yields of Intersystem Crossing. The quantum
yields of intersystem crossing (ΦISC) were determined by laser
flash photolysis comparing the absorbance (∆O.D.) of the triplet
state of sample and standard compound generated by direct
excitation and sensitized excitation. The value of quantum yield
of intersystem crossing was estimated by eq 21.
(8) Arai, T.; Maeda, Y. Chem. Lett. 1997, 335.
(9) Arai, T.; Hozumi, Y.; Takahashi, O.; Fujimori, K. J. Photochem.
Photobiol. A: Chem. 1997, 104, 85.
(10) Obi, M.; Sakuragi, H.; Arai, T. Chem. Lett. 1998, 169.
(11) Arai, T.; Hozumi, Y. Chem. Lett. 1998, 1153.
(12) Yang, Y.; Arai, T. Tetrahedron Lett. 1998, 39, 2617.
(13) Arai, T.; Norikane, Y. Chem. Lett. 1997, 339. Norikane, Y.; Itoh,
H.; Arai, T. Chem. Lett. 2000, 1094.
(14) Arai, T.; Ikegami, M. Chem. Lett. 1999, 965.
(15) Chou, P.-T.; Martinez, M. L.; Cooper, W. C. J. Am. Chem. Soc.
1992, 114, 4943.
(16) Formosinho, S. J.; Arnaut, L. G. J. Photochem. Photobiol. A: Chem.
1993, 75, 21.
(17) Catala´n, J.; Palomar, J.; de Paz, J. L. G. J. Phys. Chem. A 1997,
101, 7914.
(18) Maheshwari, S.; Chowdhury, A.; Sathyamurthy, N.; Mishra, H.;
Tripathi, H. B.; Panda, M.; Chandrasekhar, J. J. Phys. Chem. A 1999, 103,
6257.
(19) Norikane, Y.; Arai, T. Chem. Lett. 1999, 909.
(20) Catala´n J.; D´ıaz, C. J. Phys. Chem. A 1998, 102, 323.
(21) Al-Soufi, W.; Grellmann, K. H.; and Nickel, B. J. Phys. Chem.
1991, 95, 10503.
sens
∆O.D.dir
∆O.D.std
ΦISC ) Φ
(21)
std ∆O.D.std
∆O.D.sens
dir
(22) Nagaoka, S.; Yamamoto, S.; Mukai, M. J. Photochem. Photobiol.
A: Chem. 1997, 105, 29.
(23) Tokumura, K.; Kurauchi, M.; Yagata, N.; Itoh, M. Chem. Phys.
Lett. 1996, 258, 495.
where Φstd is the quantum yield of intersystem crossing of the
standard. The superscripts “dir” and “sens” indicate direct and
sensitized excitation, respectively. The subscript “std.” means
standard.
Calculations. The semiempirical calculations were performed
using CAChe MOPAC ver. 94.10 on a Macintosh G3 with
parameters in ref 42. The energy parameters, the weight of each
electronic configuration, and the MO coefficients were calcu-
lated through the semiempirical PM3 method. In the calculation,
totally optimized molecular geometries in each electronic state
or those in the ground state were used.
(24) Suzuki, T.; Kaneko, Y.; Arai, T. Chem. Lett. 2000, 756.
(25) Nagaoka, S.; Nagashima, U. Chem. Phys. 1989, 136, 153.
(26) Nagaoka, S.; Hirota, N.; Sumitani, M.; Yoshihara, K.; Lipczynska-
Kochany, E.; Iwamura, H. J. Am. Chem. Soc. 1984, 106, 6913.
(27) Law, K.-Y.; Shoham, J. J. Phys. Chem. 1994, 98, 3114.
(28) For detailed discussion, see: Herek, J. L.; Pedersen, S.; Ban˜ares,
L.; Zewail, A. H. J. Chem. Phys. 1992, 97, 9046.
(29) Miquel, J. F. Compt. Rend. 1962, 254, 4479.
(30) Nicodem, D. E.; Matos, J. A. D. G. J. Photochem. 1981, 15, 193.
(31) Matsushima, R.; Hirao, I. Bull. Chem. Soc. Jpn. 1980, 53, 518.
(32) Matsushima, R.; Kageyama, H. J. Chem. Soc., Perkin Trans. 2 1985,
6, 743.
(33) Yamin, L. J.; Blanco, J. M.; Ferretti, F. H. J. Mol. Struct.
THEOCHEM 1997, 390, 209.
(34) Reichardt, C. SolVents and SolVent Effects in Organic Chemistry;
Acknowledgment. This work was supported by a Grant-
in-Aid for Scientific Research (No. 10440166) and a Grant-in-
Aid for Scientific Research on Priority Areas (A) (No. 10146103)
from the Ministry of Education, Science, Sports, and Culture,
Japan, by Research Foundation for Opto-Science and Technol-
ogy, and by the Asahi Glass Foundation.
VCH Publishers: New York, 1988.
(35) Gijzeman, O. L. J.; Kaufman, F.; Porter, G. J. Chem. Soc., Faraday
Trans. 2 1973, 69, 708. Gorner, H.; Schulte-Frohlinde, D. J. Phys. Chem.
1981, 85, 1835. Salitiel, J.; Atwater, W. AdV. Photochem. 1988, 14, 1.
(36) Caldwell, R. A.; Singh, M. J. Am. Chem. Soc. 1983, 105, 5139.
(37) Caldwell, R. A. Pure Appl. Chem. 1984, 56, 1167.
(38) In the experimental condition, benzil triplets were quenched by
anthracene with the rate constant of 6.3 × 109 M-1 s-1, and therefore, the
diffusion controlled rate constant (kdif) was estimated to be 6.3 × 109 M-1
s-1
.
References and Notes
(39) Sandros, K., Acta Chem. Scand., Ser. A 1976, 30, 761.
(40) Murov, S. L.; Carmichael, I.; Hug, G. L. Handbook of Photochem-
istry; Marcel Dekker: New York, 1993.
(1) Eenkhoorn, J. A.; de Silva, S. O.; Snieckus, V. Can. J. Chem. 1973,
51, 792.
(2) Lewis, F. D.; Stern, C. L.; Yoon, B. A. J. Am. Chem. Soc. 1992,
114, 3131.
(41) Arai, T.; Tokumaru, K. Chem. ReV. 1993, 93, 23.
(42) Stewart, J. P. J. Comput. Chem. 1989, 10, 209.