[Ru(C5Me5)(N–O)(g3-CH2CHCHMe)][PF6] complex VI
Prepared from ligand (90 mg, 0.41 mmol,
(N C), 141.4 (CH C), 140.1 (C C), 127.6 (CH C), 113.1
(Cp¢), 111.6 (Cp¢), 110.5 (Cp¢), 106.7 (Cp¢), 104.8 (Cp¢), 101.2 (CH
allyl), 79.5 (CH2 allyl), 65.6 (CH2 allyl), 52.5 (CH), 39.4 (CMe2),
.39.4 (CH), 37.8 (CH2CMe3), 35.7 (CMe3), 32.6 (CH2), 32.3 (CH2),
30.6 (CMe3), 25.3 (CMe2), 21.2 (CMe2), 11.7 (Me), 11.4 (Me),
10.3 (Me), 10.05 (Me); HRMS calculated for C30H42NO2Ru+: [M]+
550.22590, found [M]+ 550.2258.
3
1 eq.),
[Ru(Cp*)(CH3CN)3][PF6] (208 mg, 0.41 mmol, 1 eq.) and croty-
lalcohol (70 mL) to yield after recrystallization 55% (148 mg) of a
brown complex in a ratio superior to 99 : 1. 1H NMR (200 MHz,
CD2Cl2) : 7.96 (d, J = 7.6 Hz, 1H ( CH)), 7.87 (d, J = 7.6 Hz,
1H ( CH)), 4.46 (dt, J = 10.3, 6.2 Hz, 1H (allylic CH)), 4.12 (dq,
J = 10.3, 6.2 Hz, 1H (allylic CHMe)), 3.58 (dd, J = 0.6, 6.2 Hz, 1H
(syn allylic CH)), 3.16 (m, 2H), 2.96 (td, J = 5.9, 11.6 Hz, 1H), 2.61
(t, J = 5.4 Hz, 1H), 2.54–2.45 (m, 2H), 1.63 (s, 15H (Cp*)), 1.56 (s,
3H (Me)), 1.37 (d, J = 6.2 Hz, 3H (Me)), 1.27 (d, J = 10 Hz, 1H),
0.81 (s, 3H); 13C NMR (50 MHz, CD2Cl2) : 171.8 (CO2), 168.1
(N–C–CO2), 146.4 (N C), 141.4 (CH C), 139.9 (C C), 126.3
(CH C), 107.5 (C5Me5), 101.3 (CH allyl), 85.0 (CH-Me allyl),
62.3 (CH2 allyl), 54.5 (CH), 40.1 (CMe2), 40.0 (CH), 32.5 (CH2),
32.4 (CH2), 25.3 (Me), 21.1 (Me), 17.3 (Me), 9.5 (C5Me5); anal.
calcd for C27H36F6NO2PRu : C 49.69, H 5.56 found: C 49.59, H
5.59; [a]2D0 = +145 (c 0.5, CH2Cl2).
[Ru(C5Me4t-Bu)(N–O)(g3-CH2CHCH2)][PF6] complex V
Prepared from ligand 3 (30 mg, 0.14 mmol, 1 eq.), [Ru(C5Me4t-
Bu)(CH3CN)3][PF6] (75 mg, 0.14 mmol, 1 eq.) and allyl alcohol
(30 mL) to yield after treatment 89% (83 mg) of a brown complex
as a stereoisomeric mixture in a 60/40 ratio. Only major isomer
is described : 1H NMR (200 MHz, CD2Cl2) : 8.01 (d, J = 7.8 Hz,
1H ( CH)), 7.94(d, J = 7.7 Hz, 1H ( CH)), 4.73–4.56 (m, 1H
(allylic CH)), 4.42 (d, J = 5.6 Hz, 1H (syn allylic CH)), 3.66 (d,
J = 5.4. Hz, 1H (syn allylic CH)), 3.52 (d, J = 10 Hz, (anti allylic
CH)), 3.18 (brs, 2H), 3.07–2.94 (m, 1H), 2.70 (d, J = 10.5 Hz, 1H
(anti allylic CH)), 2.52–2.46 (m, 2H), 1.87 (s, 3H (Me)), 1.85 (s, 3H
(Me)), 1.72 (s, 3H (Me)), 1.64 (s, 3H, (Me)), 1.55 (s, 3H (Me)), 1.33
(brs, 9H (CMe3)), 0.81(s, 3H (Me)); 13C NMR (75 MHz, CD2Cl2) :
172.1 (CO2), 169.2 (N C–CO2), 146.6 (N C), 141.4 (CH C),
140.2 (C C), 127,4 (CH C), 119,8 (Cp¢), 117,7 (Cp¢), 110.6
(Cp¢), 104.8 (Cp¢), 101.7 (Cp¢), 100.7 (CH allyl), 79.4 (CH2 allyl),
65.3 (CH2 allyl), 53.4 (CH), 39.5 (CMe2), 39.4 (CH), 36.4 (CMe3),
32.6 (CH2), 32.4 (CH2), 30.5 (CMe3), 25.3 (CMe2), 21.2 (CMe2),
13.8 (Me), 13.1 (Me), 11.1 (Me), 10.3 (Me); HRMS calculated for
C29H40NO2Ru+: [M]+ 536.21025, found [M]+ 536.2110.
[Ru(C5Me4i-Pr)(N–O)(g3-CH2CHCH2)][PF6] complex III
Prepared from ligand 3 (30 mg, 0.14 mmol, 1 eq.), [Ru(C5Me4i-
Pr)(CH3CN)3][PF6] (73 mg, 0.14 mmol, 1 eq.) and allyl alcohol
(18 mL) to yield after treatment 90% (82 mg) of a brown complex
as a stereoisomeric mixture in a 72/29 ratio. Only the major isomer
is described: 1H NMR (200 MHz, CD2Cl2) : 8.00 (d, J = 7.5 Hz,
1H ( CH)), 7.9 (d, J = 7.5 Hz, 1H ( CH)), 4.62–4.79 (m, 1H
(allylic CH)), 4.27 (dd, J = 2.1, 5.14 Hz, 1H (syn allylic CH)), 3.65
(dd, J = 2.0, 5.4 Hz, 1H (syn allylic CH)), 3.39 (d, J = 10.6 Hz,
1H (anti allylic CH)), 3.17 (m, 2H), 3.02–2.94 (m, 1H), 2.75 (d,
J = 10.7 Hz, 1H (anti allylic CH)), 2.66–2.49 (m, 3H), 1.77 (s, 3H),
1.69 (s, 6H), 1.65 (s, 3H), 1.56 (s, 3H), 1.29 (d, J = 9.8 Hz, 1H),
1.16 (d, J = 7 Hz, 6H, C(CH3)2), 0.82 (s, 3H); 13C NMR (75 MHz,
CD2Cl2) d (ppm): 171.7 (CO2), 169.4 (N C–CO2), 146.6 (N C),
141.4 (CH C), 139.9 (C C), 127.5 (CH C), 118.0 (Cp¢), 112.8
(Cp¢), 109.0 (Cp¢), 106.2 (Cp¢), 104.1 (Cp¢), 100.9 (CH allyl), 78.2
(CH2 allyl), 64.5 (CH2 allyl), 52.4 (CH), 39.5 (CMe2), 39.5 (CH),
32.5 (CH2), 32.0 (CH2), 26.9 (CHMe2), 25.3 (Me), 20.9 (Me), 20.2
(CHMe2) 15.4 (CHMe2), 11.2 (Me),10.0 (Me), 9.9 (Me), 9.8 (Me).
anal. calcd for C28H38F6NO2PRu : C 50.45, H 5.75 found: C 50.36,
H 5.81; HRMS calculated for C28H38NO2Ru+: [M]+ 522.19405,
found [M]+ 522.1948.
General procedure for the allylation of phenols
In a Schlenk tube containing cinnamyl carbonate (50 mg,
0.24 mmol, 1 eq.), phenol (27 mg, 0.29 mmol, 1.2 eq.) in THF
(2 mL), potassium carbonate (40 mg, 0.29 mmol, 1.2 eq.) and
precatalyst (2.5 mol%) were sequentially added. After stirring the
solution at room temperature for 16 h, the solution was filtered
through a silica plug using diethyl ether as eluent. Conversions
and B/L ratio were determined by 1H NMR. Enantioselectivities
were determined by HPLC using chiralcel-OJ, H/I 99.5/0.5,
0.8 mL min-1, l = 220, 250 nm; t1(maj) = 29.1 min. and t2(min) =
32 min.
Acknowledgements
[Ru(C5Me4CH2CMe3)(N–O)(g3-CH2CHCH2)][PF6] complex IV
The authors wish to thank Dr C. Guillaume and Dr S. Guillaume
for the methoxycarbonylation reaction. Z. S. thanks the Ministry
of Higher Education and Research of Algeria for PNE fellowship.
Prepared from ligand
3 (30 mg, 0.14 mmol, 1 eq.),
[Ru(C5Me4CH2CMe3)(CH3CN)3][PF6] (78.5 mg, 0.14 mmol, 1 eq.)
and allyl alcohol (28 mL) to yield after treatment 88% (86 mg) of a
brown complex as a stereoisomeric mixture in a 66/34 ratio. Only
1
Notes and references
the major isomer is described: H NMR (200 MHz, CD2Cl2) :
7.99 (d, J = 7.6 Hz, 1H ( CH)), 7.92 (d, J = 7.6 Hz, 1H ( CH)),
4.62–4.81 (m, 1H (allylic CH)), 4.24 (dd, J = 2.2, 5.5 Hz, 1H (syn
allylic CH)), 3.70 (d, J = 5.4 Hz, 1H (syn allylic CH)), 3.45 (d,
J = 10.5 Hz, 1H (anti allylic CH)), 3.17 (brs, 2H), 2.94–3.08 (m,
1H), 2.73 (d, J = 11.0 Hz, 1H (anti allylic CH)), 2.50–2.60 (m,
2H), 2.05 (d, J = 14 Hz, 1H), 1.78 (s, 3H (Cp¢)) 1.70(s, 3H (Cp¢)),
1.64 (s, 3H (Cp¢)), 1.63 (s, 3H (Cp¢)), 1.56 (s, 3H (CMe2)), 1.30
(d, J = 10 Hz, 1H), 1.07 (s, 9H (CMe3)), 0.80 (s, 3H (CMe2));.13C
NMR (75 MHz, CD2Cl2): 171.8 (CO2), 169.2 (N C–CO2), 146.5
1 (a) J. Tsuji, Transition Metal Reagents and Catalysts: Innovations in
Organic Synthesis, Wiley, Chichester, 2000, pp. 109; (b) G. Helmchen
and A. Pfaltz, Acc. Chem. Res., 2000, 33, 336; (c) B. M. Trost and M. L.
Crawley, Chem. Rev., 2003, 103, 2921; (d) Z. Lu and S. M. Ma, Angew.
Chem., Int. Ed., 2008, 47, 258.
2 (a) B. M. Trost and F. D. Toste, J. Am. Chem. Soc., 1998, 120, 815;
(b) B. M. Trost and F. D. Toste, J. Am. Chem. Soc., 1998, 120, 9074;
(c) B. M. Trost and F. D. Toste, J. Am. Chem. Soc., 1999, 121, 4545;
(d) P. A. Evans and D. K. Leahy, J. Am. Chem. Soc., 2000, 122, 5012;
(e) B. M. Trost and F. D. Toste, J. Am. Chem. Soc., 2000, 122, 11262;
(f) B. M. Trost, P. L. Fraisse and Z. T. Ball, Angew. Chem., Int. Ed.,
This journal is
The Royal Society of Chemistry 2011
Dalton Trans., 2011, 40, 5625–5630 | 5629
©