10.1002/chem.201804395
Chemistry - A European Journal
COMMUNICATION
[8]
[9]
a) M. Althaus, A. Mahmood, J. R. Suárez, S. P. Thomas, V. K. Aggarwal,
J. Am. Chem. Soc. 2010, 132, 4025–4028; b) A. P. Pulis, V. K. Aggarwal,
J. Am. Chem. Soc. 2012, 134, 7570–7574.
handling. The resolved boronates were employed for the efficient
stereoselective synthesis of chiral homoallylic amines with Z-
configured internal double bond by reacting with imines formed in
situ from aldehydes and ethanolic ammonia. The salient features
of the process are (i) excellent chirality transfer and (ii) high
stereoselectivity benefiting from the increased steric radius of the
Epin fragment. The work is currently underway in our laboratories
on other synthetic applications of the resolved enantioenriched
allylboronates.
a) L. Carosi, D. G. Hall, Angew. Chem. Int. Ed. 2007, 46, 5913–5915; b)
H. Ito, S. Ito, Y. Sasaki, K. Matsuura, M. Sawamura, J. Am. Chem. Soc.
2007, 129, 14856–14857; c) S. Lessard, F. Peng, D. G. Hall, J. Am.
Chem. Soc. 2009, 131, 9612–9613; d) A. Guzman-Martinez, A. H.
Hoveyda, J. Am. Chem. Soc. 2010, 132, 10634–10637; e) H. Ito, S. Kunii,
M. Sawamura, Nat. Chem. 2010, 2, 972–976; f) J. K. Park, H. H. Lackey,
B. A. Ondrusek, D. T. McQuade, J. Am. Chem. Soc. 2011, 133, 2410–
2413; g) L. T. Kliman, S. N. Mlynarski, G. E. Ferris, J. P. Morken, Angew.
Chem. Int. Ed. 2012, 51, 521–524; h) Y. Luo, I. D. Roy, A. G. E. Madec,
H. W. Lam, Angew. Chem. Int. Ed. 2014, 53, 4186–4190; i) E. Yamamoto,
Y. Takenouchi, T. Ozaki, T. Miya, H. Ito, J. Am. Chem. Soc. 2014, 136,
16515–16521; j) B. Potter, A. A. Szymaniak, E. K. Edelstein, J. P. Morken,
J. Am. Chem. Soc. 2014, 136, 17918–17921; k) Q. Zhou, H. D. Srinivas,
S. Zhang, M. P. Watson, J. Am. Chem. Soc. 2016, 138, 11989–11995; l)
E. K. Edelstein, S. Namirembe, J. P. Morken, J. Am. Chem. Soc. 2017,
139, 5027–5030; m) R. Kojima, S. Akiyama, H. Ito, Angew. Chem. Int.
Ed. 2018, 57, 7196–7199.
Acknowledgements
We thank the Leverhulme Trust for the Research grant RGP-
2015-351. Spanish MINECO (FEDER-CTQ2017-83633-P and
FPI-BES-2012-051856 fellowship to L. V.) and Basque
Government (IT908-16), are also gratefully acknowledged. We
thank Prof. Dr. V. K. Aggarwal and J. Bateman (University of
Bristol) for their kind advice and assistance in synthesizing 4d.
[10] a) C. A. Incerti-Pradillos, M. A. Kabeshov, A. V. Malkov, Angew. Chem.
Int. Ed. 2013, 52, 5338–5341. For a related propargylation reaction, see
b) A. S. Tsai, M. Chen M, W. R. Roush, Org. Lett. 2013, 15, 1568–1571.
The resolved boronates have not been isolated.
Keywords: asymmetric synthesis • allylation • amines • kinetic
[11] This contrasts sharply with the boronates decorated with the pinacol
‘helmet‘ which usually needs to be purified on silica within 10 min to
prevent degradation. In fact, Epin-derived allyl boronates did not show
any degradation or erosion of enantiomeric purity even after being left on
silica overnight.
resolution • stereoselectivity
[1]
[2]
a) D. C. Blakemore, L. Castro, I. Churcher, D. C, Rees, A. W. Thomas,
D. W. Wilson, A. Wood, Nat. Chem. 2018, 10, 383–394; b) T. Nugent, in
Process Chemistry in the Pharmaceutical Industry, Volume 2, CRC
Press, 2007, pp. 137–156.
[12] Racemic allyl boronates 4a and 4b may contain small quantity of the
linear isomer (ca. 2-5%). Excess of benzaldehyde during the kinetic
resolution allows to remove the latter as it reacts much faster compared
to the branched isomer.
For overviews, see: a) B. Eftekhari-Sis, M. Zirak, Chem. Rev. 2017, 117,
8326–8419; b) M. Yus, J. C. González-Gómez, F. Foubelo, Chem. Rev.
2011, 111, 7774–7854; c) T. R. Ramadhar, R. A. Batey, Synthesis 2011,
1321–1346. For the most recent examples, see: d) S. Gandhi, B. List,
Angew. Chem. Int. Ed. 2013, 52, 2573–2576; e) K. Yeung, R. E. Ruscoe,
J. Rae, A. P. Pulis, D. J. Procter, Angew. Chem. Int. Ed. 2016, 55,
11912–11916; f) J. Rae, K. Yeung, J. J. W. McDouall, D. J. Procter,
Angew. Chem. Int. Ed. 2016, 55, 1102–1107; g) M. Coffinet, J.-B. Behr,
F. Jaroschik, D. Harakat, J.-L. Vasse, Org. Lett. 2017, 19, 6728−6731.
a) E. M. Vieira, M. L. Snapper, A. H. Hoveyda, J. Am. Chem. Soc. 2011,
133, 3332–3335; b) Y. Jiang, S. E. Schaus, Angew. Chem. Int. Ed. 2017,
56, 1544–1548; c) D. L. Silverio, S. Torker, T. Pilyugina, E. M. Vieira, M.
L. Snapper, F. Haeffner, A. H. Hoveyda, Nature 2013, 494, 216–221; d)
S. Itsuno, K. Watanabe, A. A. El-Shehawy, Adv. Synth. Catal. 2001, 343,
89-94; e) S. Lou, P. N. Moquist, S. E. Schaus, J. Am. Chem. Soc. 2007,
129, 15398–15404; f) R. Wada, T. Shibuguchi, S. Makino, K. Oisaki, M.
Kanai, M. Shibasaki, J. Am. Chem. Soc. 2006, 128, 7687–7691; g) R.
Alam, C. Diner, S. Jonker, L. Eriksson, K. J. Szabó, Angew. Chem. Int.
Ed. 2016, 55, 14417–14421.
[13] Substrate were synthesized following literature protocols. For 4a-4b, see
ref 10a or a) J. W. Clary, T. J. Rettenmaier, R. Snelling, W. Bryks, J.
Banwell, W. T. Wipke, B. Singaram, J. Org. Chem. 2011, 76, 9602−9610.
For 4c, see b) R. P. Sonawane, V. Jheengut, C. Rabalakos, R. Larouche-
Gauthier, H. K. Scott, V. K. Aggarwal, Angew. Chem. Int. Ed. 2011, 50,
3760–3763. For 4d, see ref 8a. For 4e, see c) C.-T. Yang, Z.-Q. Zhang,
H. Tajuddin, C.-C. Wu, J. Liang, J.-H. Liu, Y. Fu, M. Czyzewska, P. G.
Steel, T. B. Marder, L. Liu, Angew. Chem. Int. Ed. 2012, 51, 528–532.
[14] The Epin diol can be efficiently recovered after the reaction (both kinetic
resolution and imine allylation) and reused in the synthesis of the starting
allyl boronates. (See Supporting Information for details)
[3]
[15] a) Y. Yamamoto, N. Asao, Chem. Rev. 1993, 93, 2207–2293; b) R. Alam,
A. Das, G. Huang, L. Eriksson, F. Himo, K. J. Szabó, Chem. Sci. 2014,
5, 2732–2738.
[16] E. W. Colvin, D. McGarry, M. J. Nugent, Tetrahedron 1988, 44, 4157–
4172.
[17] a) M. Sugiura, K. Hirano, S. Kobayashi, J. Am. Chem. Soc. 2004, 126,
7182–7183; b) S. Kobayashi, K. Hirano, M. Sugiura, Chem. Commun.
2005, 104–106.
[4]
a) J. L.-Y. Chen, V. K. Aggarwal, Angew. Chem. Int. Ed. 2014, 53,
10992–10996; b) J. D. Sieber, J. P. Morken, J. Am. Chem. Soc. 2006,
128, 74–75; c) J. I. Martínez, J. J. Smith, H. B. Hepburn, H. W. Lam,
Angew. Chem. Int. Ed. 2016, 55, 1108–1112; d) C. Allais, W. R. Roush,
Org. Lett. 2017, 19, 2646–2649.
[5]
[6]
Y. Yamamoto, T. Komatsu, K. Maruyama, J. Org. Chem. 1985, 50, 3115–
3121.
For the recent overviews on the synthesis of a-chiral non-racemic
allylboronates, see: a) C. Diner, K. J. Szabó, J. Am. Chem. Soc. 2017,
139, 2–14; b) B. S. L. Collins, C. M. Wilson, E. L. Myers, V. K. Aggarwal,
Angew. Chem. Int. Ed. 2017, 56, 11700–11733.
[7]
a) R. W. Hoffmann, B. Landmann, Angew. Chem. Int. Ed. 1984, 23, 437–
438; b) R. W. Hoffmann, Pure Appl. Chem. 1988, 60, 123–130; c) J.
Pietruszka, N. Schöne, Angew. Chem. Int. Ed. 2003, 42, 5638–5641; d)
E. Fernández, J. Pietruszka, Synlett 2009, 1474–1476; e) M. Brauns, F.
Muller, D. Gülden, D. Böse, W. Frey, M. Breugst, J. Pietruszka, Angew.
Chem. Int. Ed. 2016, 55, 1548–1552.
This article is protected by copyright. All rights reserved.