Asymmetric Hydrosilylation of Ketones
[21] a) D. A. Evans, F. E. Michael, J. S. Tedrow, K. R. Campos, J.
Am. Chem. Soc. 2003, 125, 3534; b) N. Khiar, M. P. Leal, R.
Navas, J. F. Moya, M. V. G. Pérez, I. Fernández, Org. Biomol.
Chem. 2012, 10, 355.
[22] a) S. Liu, J. Peng, H. Yang, Y. Bai, G. Lai, Tetrahedron 2012,
68, 1371; b) K. Junge, K. Möller, B. Wendt, S. Das, D. Gördes,
K. Thurow, M. Beller, Chem. Asian J. 2012, 7, 314; c) M.
Kahnes, H. Görls, L. González, M. Westerhausen, Organome-
tallics 2010, 29, 3098; d) S. Enthaler, K. Schröder, S. Inoue, B.
Eckhardt, K. Junge, M. Beller, M. Drieß, Eur. J. Org. Chem.
2010, 4893; e) S. Enthaler, B. Eckhardt, S. Inoue, E. Irran, M.
Driess, Chem. Asian J. 2010, 5, 2027.
Supporting Information (see footnote on the first page of this arti-
cle): Schemes A1–A2, Figures A1–E5, spectra obtained during
NMR experiments, calculated UV and ECD spectra for complex
7, relative energies, selected structural parameters and Cartesian
coordinates of all species and comments on the performance of the
DFT methods.
Acknowledgments
This work was supported by the National Science Centre (Poland),
grant number 2011/03/B/ST5/01011. All calculations were per-
formed at the Poznan´ Supercomputing and Networking Center.
[23] N. A. Marinos, S. Enthaler, M. Driess, ChemCatChem 2010, 2,
846.
[24] J. Gajewy, M. Kwit, J. Gawronski, Adv. Synth. Catal. 2009, 351,
1055.
[1] B. Marciniec, Hydrosilylation, Springer, Berlin, 2009.
[2] a) H. Mimoun, J. Y. de Saint Laumer, L. Giannini, R. Scopel-
liti, C. Floriani, J. Am. Chem. Soc. 1999, 121, 6158; b) H. Mim-
oun, J. Org. Chem. 1999, 64, 2582; c) X.-F. Wu, Chem. Asian
J. 2012, 7, 2502.
[3] H. Nishiyama, K. Itoh, in: Catalytic Asymmetric Synthesis
(Ed.: I. Ojima), Wiley-VCH, Weinheim, Germany, 2000, chap-
ter 2.
[4] H. Nishiyama, in: Comprehensive Asymmetric Catalysis (Eds.:
E. N. Jacobsen, A. Pfaltz, H. Yamamoto), Springer, Berlin,
1999, vol. 1, chapter 6.3.
[5] H. Nishiyama, in: Transition Metals for Organic Synthesis
Building Blocks and Fine Chemicals (Eds.: M. Beller, C. Bolm),
Wiley-VCH, Weinheim, Germany, 2004, vol. 2, chapter 1.4.2.
[6] J.-F. Carpentier, V. Bette, Curr. Org. Chem. 2002, 6, 913.
[7] O. Riant, N. Mostefaï, J. Courmarcel, Synthesis 2004, 2943.
[8] T. Hayashi, Acc. Chem. Res. 2000, 33, 354.
[9] A. K. Roy, Adv. Organomet. Chem. 2008, 55, 1.
[10] S. Diez-González, S. P. Nolan, Acc. Chem. Res. 2008, 41, 349.
[11] a) L. H. Gade, V. César, S. Bellemin-Laponnaz, Angew. Chem.
2004, 116, 1036; Angew. Chem. Int. Ed. 2004, 43, 1014; b) V.
César, S. Bellemin-Laponnaz, H. Wadepohl, L. H. Gade,
Chem. Eur. J. 2005, 11, 2862; c) H. Songa, Y. Liua, D. Fana,
G. Zib, J. Organomet. Chem. 2011, 696, 3714.
[12] C. Song, C. Ma, Y. Ma, W. Feng, S. Ma, Q. Chai, M. B.
Andrus, Tetrahedron Lett. 2005, 46, 3241.
[13] B. H. Lipshutz, K. Noson, W. Chrisman, J. Am. Chem. Soc.
2001, 123, 12917.
[14] a) S. Sirol, J. Courmarcel, N. Mostefaï, O. Riant, Org. Lett.
2001, 3, 4111; b) N. Mostefaï, S. Sirol, J. Courmarcel, O. Riant,
Synthesis 2007, 1265; c) J. Courmacel, N. Mostefaï, S. Sirol, S.
Chopin, O. Riant, Isr. J. Chem. 2002, 41, 231; d) D.-W. Lee, J.
Yun, Tetrahedron Lett. 2004, 45, 5415; e) J. Wu, J.-X. Ji,
A. S. C. Chan, Proc. Natl. Acad. Sci. USA 2005, 102, 3570; f)
M. L. Kantam, S. Laha, J. Yadav, P. R. Likhar, B. Sreedhar, S.
Jha, S. Bhargava, M. Udayakiran, B. Jagadeesh, Org. Lett.
2008, 10, 2979.
[15] M. L. Kantam, S. Laha, J. Yadav, P. R. Likhar, B. Sreedhar,
B. M. Choudary, Adv. Synth. Catal. 2007, 349, 1797.
[16] a) B. H. Lipshutz, A. Lower, K. Noson, Org. Lett. 2002, 4,
4045; b) B. H. Lipshutz, K. Noson, W. Chrisman, A. Lower, J.
Am. Chem. Soc. 2003, 125, 8779.
[17] N. S. Shaikh, S. Enthaler, K. Junge, M. Beller, Angew. Chem.
2008, 120, 2531; Angew. Chem. Int. Ed. 2008, 47, 2497.
[18] J. Yun, S. L. Buchwald, J. Am. Chem. Soc. 1999, 121, 5640.
[19] a) H. Brunner, R. Becker, G. Riepl, Organometallics 1984, 3,
1354; b) F. Yu, X.-C. Zhang, F.-F. Wu, J.-N. Zhou, W. Fang,
J. Wu, A. S. C. Chan, Org. Biomol. Chem. 2011, 9, 5652; c) X.-
C. Zhang, F.-F. Wu, S. Li, J.-N. Zhou, J. Wu, N. Li, W. Fang,
K. H. Lam, A. S. C. Chan, Adv. Synth. Catal. 2011, 353, 1457;
d) K. Junge, B. Wendt, D. Addis, S. Zhou, S. Das, M. Beller,
Chem. Eur. J. 2010, 16, 68; e) J.-T. Issenhuth, S. Dagorne, S.
Bellemin-Laponnaz, C. R. Chim. 2010, 13, 353.
[25] S. Gérard, Y. Pressel, O. Riant, Tetrahedron: Asymmetry 2005,
16, 1889.
[26] M. Bandini, M. Melucci, F. Piccinelli, R. Sinisi, S. Tommasi,
A. Umani-Ronchi, Chem. Commun. 2007, 4519.
[27] E. Santacruz, G. Huelgas, S. K. Angulo, V. M. Mastranzo, S.
Hernández-Ortega, J. A. Avina, E. Juaristi, C. Anaya de Par-
rodi, P. J. Walsh, Tetrahedron: Asymmetry 2009, 20, 2788.
[28] D. Savoia, A. Gualandi, H. Stoeckli-Evans, Org. Biomol. Chem.
2010, 8, 3992.
[29] a) J. Gawronski, H. Kołbon, M. Kwit, A. Katrusiak, J. Org.
Chem. 2000, 65, 5768; b) J. Gawronski, K. Gawronska, J. Gra-
jewski, M. Kwit, A. Plutecka, U. Rychlewska, Chem. Eur. J.
2006, 12, 1807.
[30] K. Mikami, M. Terada, T. Korenaga, Y. Matsumoto, M. Ueki,
R. Angelaud, Angew. Chem. 2000, 112, 3676; Angew. Chem.
Int. Ed. 2000, 39, 3532.
[31] K. Mikami, S. Matsukawa, Nature 1997, 385, 613.
[32] T. Ohkuma, H. Doucet, T. Pham, K. Mikami, T. Korenaga,
M. Terada, R. Noyori, J. Am. Chem. Soc. 1998, 120, 1086.
[33] S. Matsukawa, K. Mikami, Tetrahedron: Asymmetry 1997, 8,
815.
[34] K. Ding, A. Ishii, K. Mikami, Angew. Chem. 1999, 111, 519;
Angew. Chem. Int. Ed. 1999, 38, 497.
[35] K. Mikami, M. Terada, in: Comprehensive Asymmetric Cataly-
sis (Eds.: K. Mikami, M. Terada), Springer, Berlin, 1999; vol.
3, pp. 1143–1174.
[36] L. Pu, H.-B. Yu, Chem. Rev. 2001, 101, 757.
[37] K. Mikami, R. Angelaud, K. L. Ding, A. Ishii, A. Tanaka, N.
Sawada, K. Kudo, M. Senda, Chem. Eur. J. 2001, 7, 730.
[38]
A. M. Costa, C. Jimeno, J. Gavenonis, P. J. Carroll, P. J. Walsh,
J. Am. Chem. Soc. 2002, 124, 6929.
[39]
[40]
H. Ushio, K. Mikami, Tetrahedron Lett. 2005, 46, 2903.
J. Gajewy, J. Gawronski, M. Kwit, Monatsh. Chem. 2012, 143,
1045.
[41]
[42]
V. Bette, A. Mortreux, C. Lehmann, J.-F. Carpentier, Chem.
Commun. 2003, 332.
V. Bette, A. Mortreux, D. Savoia, J.-F. Carpentier, Adv. Synth.
Catal. 2005, 347, 289.
[43]
[44]
B.-M. Park, S. Mun, J. Yun, Adv. Synth. Catal. 2006, 348, 1029.
J. Gajewy, J. Gawronski, M. Kwit, Org. Biomol. Chem. 2011,
9, 3863.
[45]
[46]
[47]
P. H.-Y. Cheong, C. Y. Legault, J. M. Um, N. Çelebi-Ölçüm,
K. N. Houk, Chem. Rev. 2011, 111, 5042.
W. Koch, M. C. Holthasuen, A Chemist’s Guide to Density
Functional Theory; Wiley-VCH: Weinheim, 2001.
a) Y. Zhao, D. G. Truhlar, J. Chem. Theory Comput. 2007, 3,
289; b) Y. Zhao, D. G. Truhlar, J. Chem. Theory Comput. 2005,
1, 415.
[48]
[49]
L. Simón, J. M. Goodman, Org. Biomol. Chem. 2011, 9, 689.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B.
Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li,
H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Son-
nenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hase-
[20] H. Nishiyama, S. Yamaguchi, M. Kondo, K. Itoh, J. Org.
Chem. 1992, 57, 4306.
Eur. J. Org. Chem. 2013, 307–318
© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
317