RSC Advances
Paper
130) with the use of a mechanical beam chopper. The response 15 J. Frisch, M. Herder, P. Herrmann, G. Heimel, S. Hecht and
was recorded as a voltage over a 50 U resistor (Stanford Research N. Koch, Appl. Phys. A: Mater. Sci. Process., 2013, 113, 1–4.
Systems SR570) using a lock-in amplier (Stanford Research 16 Q. Wang, J. Frisch, M. Herder, S. Hecht and N. Koch,
Systems SR830). A calibrated silicon cell with a known spectral ChemPhysChem, 2017, 18, 722–727.
response was used as a reference. During the measurement, the 17 M. Irie, T. Lia, S. Kobatake and N. Kato, J. Am. Chem. Soc.,
device was kept in a nitrogen-lled box behind a quartz window. 2000, 122, 4871–4876.
UV illumination to switch the DAE dyes to the closed-ring 18 R. Schmidt, M. Pars, T. Weller, M. Thelakkat and J. Kohler,
¨
¨
isomers was afforded by a benchtop UV light (TL 8W BLB 1FM/
10X25CC, l z 365 nm, 30 min at a distance of z10 cm).
The thicknesses of the active layers on the devices were
Appl. Phys. Lett., 2014, 104, 013304.
¨
19 C. Schorner, D. Wolf, T. Schumacher, P. Bauer, M. Thelakkat
and M. Lippitz, J. Phys. Chem. C, 2017, 121, 16528–16532.
determined using a Veeco Dektak 150 prolometer, subtracting 20 T. Kato, K. Okano and T. Yamashita, J. Photopolym. Sci.
the thicknesses of any underlying layers.
Technol., 2010, 23, 241–244.
21 K. Shibata, K. Muto, S. Kobatake and M. Irie, J. Phys. Chem. A,
2002, 106, 209–214.
22 S. H. Kawai, S. L. Gilat, R. Ponsinet and J. M. Lehn, Chem.–
Eur. J., 1995, 1, 285–293.
23 S. L. Gilat, S. H. Kawai and J. M. Lehn, Chem.–Eur. J., 1995, 1,
275–284.
Conflicts of interest
There are no conicts to declare.
Acknowledgements
24 M. Irie, Chem. Rev., 2000, 100, 1685–1716.
25 T. Tsujioka and H. Kondo, Appl. Phys. Lett., 2003, 83, 937–
939.
26 M. Irie, T. Fukaminato, K. Matsuda and S. Kobatake, Chem.
Rev., 2014, 114, 12174–12277.
27 M. Irie, T. Lia, S. Kobatake and N. Kato, J. Am. Chem. Soc.,
2000, 122, 4871–4876.
28 S. H. Kawai, S. L. Gilat and J. M. Lehn, Eur. J. Org. Chem.,
1999, 2359–2366.
¨
We thank Martin Herder, Stefan Hecht, and Michael Patzel for
providing dyes 1 and 3 and for stimulating discussions and
Haijun Bin for recording the AFM data. We acknowledge
funding from the European Research Council (Grant Agreement
No. 339031) and the NWO Spinoza prize awarded to R. A. J.
Janssen by the Netherlands Organization for Scientic Research
(NWO), and the Ministry of Education, Culture and Science
(Gravity program 024.001.035).
29 J. Areephong, W. R. Browne, N. Katsonis and B. L. Feringa,
Chem. Commun., 2006, 3930–3932.
30 H. Logtenberg, J. H. M. Van der Velde, P. De Mendoza,
J. Areephong, J. Hjelm, B. L. Feringa and W. R. Browne, J.
Phys. Chem. C, 2012, 116, 24136–24142.
31 T. Tsujioka and M. Irie, J. Photochem. Photobiol., C, 2010, 11,
1–14.
References
1 C. Cui and Y. Li, Energy Environ. Sci., 2019, 12, 3225–3246.
¨
2 O. Inganas, Adv. Mater., 2018, 30, 1800388.
3 V. Vohra, Chem. Rec., 2019, 19, 1166–1178.
`
4 W. Hou, Y. Xiao, G. Han and J. Y. Lin, Polymers, 2019, 11, 143. 32 E. Orgiu and P. Samorı, Adv. Mater., 2014, 26, 1827–1845.
˜
´
´
5 J. A. Luceno-Sanchez, A. M. Dıez-Pascual and R. P. Capilla, 33 N. Zhang, W. Y. Lo, A. Jose, Z. Cai, L. Li and L. Yu, Adv.
Int. J. Mol. Sci., 2019, 20, 976.
Mater., 2017, 33, 1701248.
6 J. J. Wu, M. D. Hsieh, W. P. Liao, W. T. Wu and J. S. Chen, 34 Z. Liu, H. I. Wang, A. Narita, Q. Chen, Z. Mics,
¨
¨
ACS Nano, 2009, 3, 2297–2303.
D. Turchinovich, M. Klaui, M. Bonn and K. Mullen, J. Am.
7 W. Wu, J. Wang, Z. Zheng, Y. Hu, J. Jin, Q. Zhang and J. Hua,
Sci. Rep., 2015, 5, 8592.
Chem. Soc., 2017, 139, 9443–9446.
¨
35 M. El Gemayel, K. Borjesson, M. Herder, D. T. Duong,
´
8 S. Ma, H. Ting, Y. Ma, L. Zheng, M. Zhang, L. Xiao and
Z. Chen, AIP Adv., 2015, 5, 057154.
9 N. M. Johnson, Y. Y. Smolin, C. Shindler, D. Hagaman,
J. A. Hutchison, C. Ruzie, G. Schweicher, A. Salleo,
Y. Geerts, S. Hecht, E. Orgiu and P. Samori, Nat. Commun.,
2015, 6, 6330.
M. Soroush, K. K. S. Lau and H. F. Ji, AIMS Mater. Sci., 36 Z. Zhang, X. Liu, Z. Li, Z. Chen, F. Zhao, F. Zhang and
2015, 2, 503–509.
C. H. Tung, Adv. Funct. Mater., 2008, 18, 302–307.
¨
10 M. Irie and M. Mohri, J. Org. Chem., 1988, 53, 803–808.
11 M. Irie, T. Lia and K. Uchida, Mol. Cryst. Liq. Cryst., 1997,
297, 81–84.
37 P. Zacharias, M. C. Gather, A. Kohnen, N. Rehmann and
K. Meerholz, Angew. Chem., Int. Ed., 2009, 48, 4038–4041.
38 T. Tsujioka, M. Yamamoto, K. Shoji and K. Tani, Photochem.
Photobiol. Sci., 2010, 9, 157–161.
¨
12 E. Orgiu, N. Crivillers, M. Herder, L. Grubert, M. Patzel,
¨
J. Frisch, E. Pavlica, D. T. Duong, G. Bratina, A. Salleo, 39 S. Fredrich, R. Gostl, M. Herder, L. Grubert and S. Hecht,
N. Koch, S. Hecht and P. Samori, Nat. Chem., 2012, 4, 675–
679.
13 M. Hamano and M. Irie, Jpn. J. Appl. Phys., 1996, 35, 1764–
1767.
Angew. Chem., Int. Ed., 2016, 55, 1208–1212.
40 M. Irie, K. Sakemura, M. Okinaka and K. Uchida, J. Org.
Chem., 1995, 60, 8305–8309.
¨
41 T. Kawai, N. Fukuda, D. Groschl, S. Kobatake and M. Irie,
14 T. Leydecker, M. Herder, E. Pavlica, G. Bratina, S. Hecht,
Jpn. J. Appl. Phys., 1999, 38, L1194–L1196.
`
E. Orgiu and P. Samorı, Nat. Nanotechnol., 2016, 11, 769–775.
30184 | RSC Adv., 2020, 10, 30176–30185
This journal is © The Royal Society of Chemistry 2020