2
Rhodamine hydrazide to detect Cu ions by naked eyes
?
2
2
1. S.L. Belli, A. Zirino, Behavior and calibration of the copper(II) ion-selective electrode in high
chloride media and marine waters. Anal. Chem. 65, 2583–2589 (1993)
2
2. M.Y. Pamukoglu, F. Kargi, Elimination of Cu toxicity by powdered waste sludge (PWS) addition
?
2
?
to an activated sludge unit treating Cu containing synthetic wastewater. J. Hazard. Mater. 148,
74–280 (2007)
2
23. P.G. Welsh, J. Lipton, C.A. Mebane, J.C.A. Marr, Influence of flow-through and renewal exposures
on the toxicity of copper to rainbow trout. Eco Toxicol. Environ. Safe. 69, 199–208 (2008)
24. K.N. Buck, J.R.M. Ross, A.R. Flegal, K.W. Bruland, A review of total dissolved copper and its
chemical speciation in San Francisco Bay, California. Environ. Res. 105, 5–19 (2007)
25. E. Van Genderen, R. Gensemer, C. Smith, R. Santore, A. Ryan, Evaluation of the biotic ligand model
relative to other site-specific criteria derivation methods for copper in surface waters with elevated
hardness. Aquat. Toxicol. 84, 279–291 (2007)
2
2
6. P. Kumar, R.K. Tewari, P.N. Sharma, Modulation of copper toxicity-induced oxidative damage by
excess supply of iron in maize plants. Plant Cell Rep. 27, 399–409 (2008)
7. J. Huang, Y. Xu, X. Qian, A red-shift colorimetric and fluorescent sensor for Cu in aqueous
solution: unsymmetrical 4,5-diaminonaphthalimide with N-H deprotonation induced by metal ions.
Org. Biomol. Chem. 7, 1299–1303 (2009)
2
?
2
2
3
3
3
3
8. Z. Guo, W. Zhu, H. Tian, Hydrophilic copolymer bearing dicyanomethylene-4H-pyran moiety as
2?
fluorescent film sensor for Cu and pyrophosphate anion. Macromolecules 43, 739–744 (2010)
2
?
2?
9. Y. Hu, Q. Li, H. Li, Q. Guo, Y. Lua, Z. Li, A novel class of Cd , Hg turn-on and Cu , Zn turn-
2?
2?
off Schiff base fluorescent probes. Dalton T. 39, 11344–11352 (2010)
2
?
0. J. Liu, Y. Lu, Colorimetric Cu detection with a ligation DNAzyme and nanoparticles. Chem.
Commun. 46, 4872–4874 (2007)
1. S.J. Lee, S.S. Lee, J.Y. Lee, J.H. Jung, A functionalized inorganic nanotube for the selective
detection of copper (II) Ion. Chem. Mater. 18, 4713–4715 (2006)
2?
2. R. Sheng, P. Wang, Y. Gao, Y. Wu, W. Liu, J. Ma et al., Colorimetric test kit for Cu detection.
Org. Lett. 10, 5015–5018 (2008)
2
?
3. S. Basurto, O. Riant, D. Moreno, J. Rojo, T. Torroba, Colorimetric detection of Cu cation an-
dacetate, benzoate, and cyanide anions by cooperative receptor binding in new a, a‘-Bis-substituted
Donore-Acceptor Ferrocene Sensors. J. Org. Chem. 72, 4673–4788 (2007)
3
3
4. M. Schmittel, H.W. Lin, Quadruple-channel sensing: a molecular sensor with a single type of
receptor site for selective and quantitative multi-ion analysis. Angew. Chem. Int. Edit. 46, 893–896
(2007)
5. Q. Li, M. Peng, N. Li, J.G. Qin, Z. Li, New colorimetric chemosensor bearing naphthalendiimide unit
2
?
with large blue-shift absorption for naked eyes detection of Cu ions. Sens. Actuators B 173,
80–584 (2012)
6. N.R. Chereddy, T. Sathiah, Synthesis of a highly selective bis-rhodamine chemosensor for naked-eye
5
3
3
3
3
4
4
2
?
detection of Cu ions and its application in bio-imaging. Dyes Pigm. 91, 378–382 (2011)
7. J.M. Kwon, Y.J. Jang, Y.J. Lee, K.M. Kim, M.S. Seo, W. Nam et al., A highly selective fluorescent
2?
chemosensor for Pb . J. Am. Chem. Soc. 127, 10107–10111 (2005)
8. M.H. Lee, J.S. Wu, J.W. Lee, J.H. Jung, J.S. Kim, Highly sensitive and selective chemosensor for
2?
Hg based on the rhodamine fluorophore. Org. Lett. 9, 2501–2504 (2007)
9. S.K. Ko, Y.K. Yang, J. Tae, I. Shin, In vivo monitoring of mercury ions using a rhodamine-based
molecular probe. J. Am. Chem. Soc. 128, 14150–14155 (2006)
0. K. Ghosh, T. Sarkar, A. Samadderb, A.R. Khuda-Bukhsh, Rhodamine-based bis-sulfonamide as a
2
?
2?
sensing probe for Cu and Hg ions. New J. Chem. 36, 2121–2127 (2012)
1. L. Wang, J. Yan, W. Qin, W. Liu, R. Wang, A new rhodamine-based single molecule multianalyte
2
Cu , Hg ) sensor and its application in the biological system. Dyes Pigm. 92, 1083–1090 (2012)
?
2?
(
123