Y. Hirokawa et al. / Tetrahedron Letters 52 (2011) 581–583
583
Rainka, M. P.; Milne, J. E.; Buchwald, S. L. Angew. Chem. Int. Ed. 2005, 44, 6177–
6180; (c) Yu, S. H.; Ferguson, M. J.; McDonald, R.; Hall, D. G. J. Am. Chem. Soc.
2005, 127, 12808–12809; (d) Gurjar, M. K.; Karumudi, B.; Ramana, C. V. J. Org.
Chem. 2005, 70, 9658–9661; (e) Coleman, R. S.; Gurrala, S. R. Org. Lett. 2004, 6,
4025–4028; (f) Gurjar, M. K.; Cherian, J.; Ramana, C. V. Org. Lett. 2004, 6, 317–
319; (g) Hutchison, J. M.; Hong, S.-P.; McIntosh, M. C. J. Org. Chem. 2004, 69,
4185–4191; (h) Hong, S.-P.; McIntosh, M. C. Org. Lett. 2002, 4, 19–21.
3. Kabalka, G. W.; Venkataiah, B. Tetrahedron Lett. 2005, 46, 7325–7328.
4. Mitra, S.; Gurrala, S. R.; Coleman, R. S. J. Org. Chem. 2007, 72, 8724–8736.
5. (a) Kitamura, M.; Hirokawa, Y.; Maezaki, N. Chem. Eur. J. 2009, 15, 9911–9917;
(b) Hirokawa, Y.; Kitamura, M.; Maezaki, N. Tetrahedron: Asymmetry 2008, 19,
1167–1170.
6. Mont, N.; Mehta, V. P.; Appukkuttan, P.; Beryozkina, T.; Toppet, S.; Van Hecke,
K.; Van Meervelt, L.; Voet, A.; DeMaeyer, M.; Van der Eycken, E. J. Org. Chem.
2008, 73, 7509–7516.
7. Wolfe, J. P.; Singer, R. A.; Yang, B. H.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121,
9550–9561.
8. The relative relationship was able to speculate from the coupling constants
between the C1- and C2-methin protons. The values of syn-isomers are ranged
around 4 Hz. Instead, those of the corresponding anti-isomers exhibit the larger
value around 8 Hz. A similar empirical rule was also reported by Nakai, see;
Mikami, K.; Kimura, Y.; Kishi, N.; Nakai, T. J. Org. Chem. 1983, 48, 279–281.
9. Mico, A. D.; Margarita, R.; Parlanti, L.; Vescovi, A.; Piancatelli, G. J. Org. Chem.
1997, 62, 6974–6977.
10. For asymmetric [2,3]-Wittig rearrangement employing an external chiral
ligand, see: (a) Tomooka, K. Chem. Organolithium Compd. 2004, 2, 749–828; (b)
Hiersemann, M.; Abraham, L.; Pollex, A. Synlett 2003, 1088–1095; (c) Tsubuki,
M.; Takahashi, K.; Honda, T. J. Org. Chem. 2003, 68, 10183–10186; (d)
McGowan, G. Aust. J. Chem. 2002, 55, 799; (e) Tomooka, K.; Komine, N.;
Nakai, T. Chirality 2000, 12, 505–509; (f) Tomooka, K.; Komine, N.; Nakai, T.
Tetrahedron Lett. 1998, 39, 5513–5516; (g) Manabe, S. Chem. Pharm. Bull. 1998,
46, 335–336; (h) Nakai, T.; Tomooka, K. Pure Appl. Chem. 1997, 69, 595–600; (i)
Manabe, S. Chem. Commun. 1997, 737–738; (j) Nakai, T.; Mikami, K. Org. React.
1994, 46, 105–209; (k) Marshall, J. A. In Comprehensive Organic Synthesis; Trost,
B. M., Fleming, I., Eds.; Pergamon: New York, 1991; Vol. 3, pp 975–1014; (l)
Kang, J.; Cho, W. O.; Cho, H. G.; Oh, H. J. Bull. Korean Chem. Soc. 1994, 15, 732–
739.
Me
HO
TBAF,THF
rt, 2 h
OMe
OMe
HO
MeO
MeO
-6
(−)
OMe
-7
(quant)
MeO
(−)
Me
cat.
TEMPO
PhI(OAc)2
CH2Cl2, rt, 1.5 h
O
OMe
OMe
O
MeO
MeO
OMe
(95%)
MeO
(+)-eupomatilone 2
Scheme 4. Conversion to (+)-eupomatilone 2.
the coordination of the chiral ligand to n-BuLi that prevented the
formation of a reactive chiral base.
We attempted to confirm the absolute configuration at the chi-
ral center of the secondary alcohol by using the modified Mosher
method,12 but the arbitrary distribution of the
D
dSR sign made
the appropriate assignment difficult.13 The modified Mosher meth-
od was, therefore, considered unsuitable for this compound. Con-
sequently, we abandoned our attempt to confirm the absolute
configuration at this stage and decided to determine it by derivati-
zation of the natural product.
Finally, we transformed the product (ꢀ)-6 into chiral eupomat-
ilone 2, as shown in Scheme 4. After deprotecting the TIPS group
with TBAF, the resulting diol (ꢀ)-7 was selectively oxidized using
catalytic TEMPO in the presence of PhI(OAc)2 as co-oxidant.9 Thus,
(+)-eupomatilone 2 in 95% yield was obtained in two steps.14,15 The
sign of specific rotation was reversed on the formation of
tone. Thus, the sign of the synthetic eupomatilone 2 matched that
of the natural product; however, its value was greater than that re-
11. Procedure of asymmetric [2,3]-Wittig rearrangement (Table 1, entry 10). n-
BuLi (1.6 M in hexane, 1.25 mL, 2.00 mmol) was added dropwise to
a
suspension of ether (240 mg, 0.40 mmol) and bis(oxazoline) ligand L1
5
(118 mg, 0.40 mmol) in a 4:1 mixture of dry hexane and dry ether (2 mL) with
stirring at ꢀ78 °C under Ar. The stirring continued at this temperature for 2 h.
The reaction was quenched with saturated NH4Cl (8 mL) and the mixture was
partitioned between EtOAc (40 mL) and water (20 mL). The organic layer was
separated and the aqueous layer was extracted with EtOAc (20 mL). Prior to
drying and solvent evaporation, the combined organic layer was washed with
water (20 mL) and brine (20 mL). The residue was chromatographed on silica
gel with hexane–EtOAc (3:1) to give alcohol (ꢀ)-6 (235 mg, 98%, 89% ee) as a
c-lac-
ported in literature [½a D25
ꢁ
+12.0 (c 0.60, CHCl3); lit. ½a D
ꢁ
+3.3 (c 0.5,
CHCl3)].1 The 1H and 13C NMR spectra were identical to those in the
reported data.1,4
colorless oil. ½a D25
ꢁ
ꢀ21.2 (c 0.72, CHCl3); 1H NMR d: 0.96 (d, J = 7.1 Hz, 3H),
In conclusion, we have achieved the total synthesis of ( )- and
(+)-eupomatilone 2 by employing a [2,3]-Wittig rearrangement
as the key reaction. We optimized the enantioselectivity up to
89% ee by using the bisoxazoline ligand L1 and n-BuLi in a solvent
mixture of n-hexane and ether, and obtained (+)-eupomatilone 2 in
50% overall yield from alcohol 1 in five steps. This strategy contrib-
utes to our knowledge of the synthesis of eupomatilone congeners
and their derivatives as well as related biological research. The
application of this method to other congeners will follow in due
course.
1.00–1.10 (21H), 2.35 (qd, J = 7.1, 3.2 Hz, 1H), 3.50 (br, 1H), 3.67 (s, 3H), 3.80 (s,
3H), 3.85 (s, 3H), 3.82 (d, J = 12.7 Hz, 1H), 3.89 (s, 6H), 3.93 (s, 3H), 4.03 (d,
J = 12.7 Hz, 1H), 4.52 (s, 1H), 4.77 (d, J = 3.2 Hz, 1H), 4.97 (d, J = 1.2 Hz, 1H), 6.42
(d, J = 1.7 Hz, 1H), 6.47 (d, J = 1.7 Hz, 1H), 7.04 (s, 1H); 13C NMR d: 11.16, 11.85
(3C), 17.85 (6C), 43.80, 55.93, 55.97, 56.16, 60.77, 60.84, 61.25, 65.09, 72.61,
105.74, 106.59, 108.01, 113.05, 127.31, 131.92, 136.39, 136.94, 140.86, 150.51,
150.96, 152.39, 152.79, 153.00; IR (KBr) cmꢀ1: 3477, 3097, 1586; MS (FAB) m/z:
605 [M+H]+; HRMS (FAB) m/z: calcd for C33H52O8Si: 605.3510, found: 605.3528
[M+H]+.
12. Ohtani, I.; Kusumi, K.; Kashman, Y.; Kakisawa, H. J. Am. Chem. Soc. 1991, 113,
4092–4096.
13. There are other examples where was not possible to apply a modified Mosher
method because of the arbitrary distribution of the
D
dSR sign, see: (a) Seco, J.
M.; Quiñoá, E.; Riguera, R. Chem. Rev. 2004, 104, 17–117; (b) Seco, J. M.; Quiñoá,
E.; Riguera, R. Tetrahedron: Asymmetry 2000, 11, 2781–2791.
14. The enantiomeric excess of the synthetic (+)-eupomatilone 2 was confirmed as
89% ee by chiral HPLC (Column: CHIRALPAK AD-H, solvent: hexane–i-PrOH =
9:1, flow rate: 1 mL/min).
Acknowledgments
We acknowledge the financial support of the Grant-in-Aid for
Scientific Research (C) from the Japan Society for the Promotion
of Science (No. 21590032) and the Osaka Ohtani University
Research Fund (Pharmaceutical Sciences).
15. Spectral data of synthetic (+)-eupomatilone 2: ½a D23
ꢁ
+12.02 (c 0.60, CHCl3); 1H
NMR d: 0.84 (d, J = 7.3 Hz, 3H), 2.88 (qnt, J = 7.3, 2.1 Hz, 1H), 3.70 (s, 3H), 3.85
(s, 3H), 3.86 (s, 3H), 3.88 (s, 3H), 3.92 (s, 6H), 5.52 (d, J = 7.3 Hz, 1H), 5.55 (d,
J = 2.0 Hz, 1H), 6.26 (d, J = 2.2 Hz, 1H), 6.37 (d, J = 1.7 Hz, 1H), 6.46 (d, J = 1.7 Hz,
1H), 6.69 (s, 1H); 13C NMR d: 16.86, 38.31, 56.12, 56.16, 56.25, 60.88, 60.92,
61.37, 79.26, 104.86, 106.42, 107.42, 122.07, 127.64, 129.86, 131.01, 137.28,
140.90, 141.90, 151.25, 152.98, 153.06, 153.24, 170.14; IR (KBr) cmꢀ1: 3097,
1767, 1664, 1592; MS (FAB): m/z 445 [M+H]+; HRMS (FAB): m/z calcd for
References and notes
1. Carroll, A. R.; Taylor, W. C. Aust. J. Chem. 1991, 44, 1705–1714.
2. For synthesis of congeners of eupomatilone 2, see: (a) Johnson, J. B.; Bercot, E.
A.; Williams, C. M.; Rovis, T. Angew. Chem. Int. Ed. 2007, 46, 4514–4518; (b)
C
24H28O8: 445.1862, found: 445.1853 [M+H]+.