Macromolecules
ARTICLE
by convergence of the growing isotropic domains—i.e., disappear-
ance of the nematic domains—leading to exponential kinetics.
Because there is a distribution of nematic domain sizes in the
beginning, the individual domains disappear at different times,
smaller ones followed by larger ones. Coincidentally, the camera is
centered on a cluster of smaller domains, which disappear faster and
produce the artifact of isotropization seeming to start in the center
of the screen. The fourth image in Figure 6 then shows some of the
smaller nematic domains in the center as they disappear, signifying
the transition to the exponential regime whereby the growing
isotopic domains begin to coalesce and stop growing. A decreasing
number of growing isotropic domains means a decreasing isotro-
pization rate, which corresponds to the exponential kinetics.
(11) Noirez, L.; Ungerank, M.; Stelzer, F. Macromolecules 2001, 34,
7885–7893.
(
12) Donnio, B.; Buathong, S.; Bury, I.; Guillon, D. Chem. Soc. Rev.
007, 36, 1495–1513.
13) Clarke, S. M.; Terentjev, E. M. Phys. Rev. Lett. 1998, 81,
436–4439.
14) Clarke, S. M.; Terentjev, E. M.; Kundler, I.; Finkelmann, H.
Macromolecules 1998, 31, 4862–4872.
15) Donnio, B.; Wermter, H.; Finkelmann, H. Macromolecules
2
(
4
(
(
2
000, 33, 7724–7729.
(16) Finkelmann, H.; Garcia-Amoros, J.; Velasco, D. J. Mater. Chem.
2011, 21, 1094–1101.
(17) Finkelmann, H.; Kock, H. J.; Rehage, G. Makromol. Chem.,
Rapid Commun. 1981, 2, 317–322.
(
18) Finkelmann, H.; Komp, A. Macromol. Rapid Commun. 2007,
8, 55–62.
19) Finkelmann, H.; Nishikawa, E.; Pereira, G. G.; Warner, M. Phys.
2
’
CONCLUSIONS
(
The new material presented here fills the need of a room
Rev. Lett. 2001, 8701, xxxx.
temperature bulk photoresponsive SCLCP. It combines the side-
(20) Finkelmann, H.; Rehage, G. Makromol. Chem., Rapid Commun.
980, 1, 31–34.
(21) Gallot, B.; Galli, G.; Ceccanti, A.; Chiellini, E. Polymer 1999, 40,
561–2568.
38
1
on azobenzene LC from Li with the polysiloxane backbone and
32
the attachment procedure from Verploegen to obtain a nematic
2
SCLCP with a low Tiso and a low T . It does have a crystalline
g
(
22) Gleim, W.; Finkelmann, H. Makromol. Chem., Macromol. Chem.
Phys. 1987, 188, 1489–1500.
23) Jiang, T. Y.; Zhang, B. Y.; Tian, M.; Wang, Y. J. Appl. Polym. Sci.
003, 89, 2845–2851.
24) Meng, F. B.; Cui, Y.; Chen, H. B.; Zhang, B. Y.; Jia, C. Polymer
phase, but the nematic phase is metastable at room temperature
because the crystalline phase takes several days to form. Conse-
quently, the photoresponsive behavior was demonstrated at room
temperature using POM with in situ UV irradiation. Upon irradia-
tion, the nematic phase quickly began to undergo isotropization,
and this process started with a linear regime, with isotropic domains
emanating from the nematic domain boundaries, and finished with
an exponential regime, corresponding to convergence and coales-
cence of the growing isotropic domains. In the future, reversibility
in the isotropization of this material will be shown as well as the
functional temperature range in which photoresponsive behavior is
observed, from well below room temperature to well above room
(
2
(
2009, 50, 1187–1196.
(25) Merekalov, A. S.; Finkelmann, H. Macromol. Chem. Phys. 1996,
197, 2325–2330.
(
(
26) Moment, A.; Hammond, P. T. Polymer 2001, 42, 6945–6959.
27) Moment, A.; Miranda, R.; Hammond, P. T. Macromol. Rapid
Commun. 1998, 19, 573–579.
28) Sanchez-Ferrer, A.; Finkelmann, H. Mol. Cryst. Liq. Cryst. 2009,
08, 357–366.
29) Sanchez-Ferrer, A.; Finkelmann, H. Macromol. Rapid Commun.
2011, 32, 309–315.
30) Tajbakhsh, A. R.; Terentjev, E. M. Eur. Phys. J. E 2001, 6,
181–188.
(
5
(
temperature as defined by its T and T . Thisis animportantrange
g
iso
because most of its potential applications as an actuator material are
in the common ambient living range around room temperature.
(
(31) Verploegen, E.; Tian, L.; McAfee, L. C.; Verploegen, D.;
Hammond, P. T. Abstr. Pap. Am. Chem. Soc. 2006, 231, xxxx.
’
ACKNOWLEDGMENT
(
32) Verploegen, E.; Zhang, T.; Murlo, N.; Hammond, P. T. Soft
Matter 2008, 4, 1279–1287.
33) Zentel, R.; Ohm, C.; Brehmer, M. Adv. Mater. 2010, 22, 3366–
387.
The authors of this paper thank the United States Army’s
(
Institute for Soldier Nanotechnologies (ISN) for equipment,
facilities, and financial support of this research.
3
(34) Zhang, S. J.; Terentjev, E. M.; Donald, A. M. Macromolecules
2
004, 37, 390–396.
’
REFERENCES
(35) Rousseau, I. A.; Mather, P. T. J. Am. Chem. Soc. 2003,
(1) Bezou, P.; Pacreau, A.; Vairon, J. P.; Lacoudre, N.; Friedrich, C.;
125, 15300–15301.
Noel, C. Polym. Adv. Technol. 1997, 8, 63–74.
(36) Verploegen, E.; Boone, D.; Hammond, P. T. J. Polym. Sci., Part
B: Polym. Phys. 2007, 45, 3263–3266.
(2) Percec, V.; Zheng, Q. J. Mater. Chem. 1992, 2, 1041–1047.
(
3) Zhu, Z. G.; Zhi, J. G.; Liu, A. H.; Cui, J. X.; Tang, H.; Qiao, W. Q.;
(37) Verploegen, E.; McAfee, L. C.; Tian, L.; Verploegen, D.;
Hammond, P. T. Abstr. Pap. Am. Chem. Soc. 2005, 230, U3673–U3673.
(38) Li, M. H.; Auroy, P.; Keller, P. Liq. Cryst. 2000, 27, 1497–1502.
(39) Li, M. H.; Keller, P. Philos. Trans. R. Soc., A 2006, 364, 2763–
2777.
(40) Li, M. H.; Keller, P.; Li, B.; Wang, X. G.; Brunet, M. Adv. Mater.
2003, 15, 569–572.
(41) Naciri, J.; Srinivasan, A.; Jeon, H.; Nikolov, N.; Keller, P.; Ratna,
Wan, X. H.; Zhou, Q. F. J. Polym. Sci., Part A: Polym. Chem. 2007, 45,
30–847.
(
8
4) Anthamatten, M.; Wu, J. S.; Hammond, P. T. Macromolecules
2
001, 34, 8574–8579.
(
5) Anthamatten, M.; Zheng, W. Y.; Hammond, P. T. Macromole-
cules 1999, 32, 4838–4848.
6) Itoh, T.; Yamada, M.; Hirao, A.; Nakahama, S. I.; Watanabe, J.
Mol. Cryst. Liq. Cryst. 2000, 347, 455–464.
7) Yu, H. F.; Okano, K.; Shishido, A.; Ikeda, T.; Kamata, K.;
Komura, M.; Iyoda, T. Adv. Mater. 2005, 17, 2184–2188.
8) Mao, G. P.; Wang, J. G.; Clingman, S. R.; Ober, C. K.; Chen, J. T.;
Thomas, E. L. Macromolecules 1997, 30, 2556–2567.
9) Ahn, S. K.; Deshmukh, P.; Kasi, R. M. Macromolecules 2010, 43,
330–7340.
10) Gabert, A. J.; Verploegen, E.; Hammond, P. T.; Schrock, R. R.
Abstr. Pap. Am. Chem. Soc. 2006, 231, xxxx.
(
B. R. Macromolecules 2003, 36, 8499–8505.
(
(42) Chang, S.; Han, C. D. Macromolecules 1996, 29, 2103–2112.
(43) Burke, K. A.; Mather, P. T. J. Mater. Chem. 2010, 20, 3449–
3457.
(44) Buguin, A.; Li, M. H.; Silberzan, P.; Ladoux, B.; Keller, P. J. Am.
Chem. Soc. 2006, 128, 1088–1089.
(45) Cotton, J. P.; Hardouin, F. Prog. Polym. Sci. 1997, 22, 795–828.
(46) Barrett, C. J.; Mamiya, J. I.; Yager, K. G.; Ikeda, T. Soft Matter
2007, 3, 1249–1261.
(
(
7
(
8
884
dx.doi.org/10.1021/ma2013173 |Macromolecules 2011, 44, 8880–8885