Please do not adjust margins
Chemical Science
Page 6 of 8
DOI: 10.1039/C7SC05484J
ARTICLE
Journal Name
at the beginning when being stored in ambient air under a 4.
relative humidity of 40~50%. However, dopant-free BTF4 5.
based device can still retain over 50% of its original PCE after 6.
stored for 30 days, while the PCE of the doped spiro-OMeTAD 7.
based device almost vanished. Moreover, BTF4-based inverted 8.
devices also showed an enhanced stability and can retain 55%
of its original PCE after being stored in air for 7 days, while 90% 9.
of PCE of PEDOT:PSS-based control device was lost (Figure
S18e). Thus, our designed fluoranthene-cored dopant-free
HTMs not only deliver a high PCE comparable to doped spiro- 10.
OMeTAD, but also show an enhanced device stability, 11.
suggesting they are very promising material candidates 12.
towards efficient PVSCs.
P. Docampo and T. Bein, Acc. Chem. Res., 2016, 49, 339-346.
Z. Yu and L. Sun, Adv. Energy Mater., 2015, , 1500213.
5
J. Seo, J. H. Noh and S. I. Seok, Acc. Chem. Res., 2016, 49, 562-572.
C.-C. Chueh, C.-Z. Li and A. K. Y. Jen, Energy Environ. Sci., 2015,
1160-1189.
8
,
S. Ameen, M. A. Rub, S. A. Kosa, K. A. Alamry, M. S. Akhtar, H. S. Shin,
H. K. Seo, A. M. Asiri and M. K. Nazeeruddin, ChemSusChem, 2016,
10-27.
9,
J. Shi, X. Xu, D. Li and Q. Meng, Small, 2015, 11, 2472-2486.
H. Kim, K.-G. Lim and T.-W. Lee, Energy Environ. Sci., 2016,
9, 12-30.
K. Rakstys, M. Saliba, P. Gao, P. Gratia, E. Kamarauskas, S. Paek, V.
Jankauskas and M. K. Nazeeruddin, Angew. Chem. Int. Ed. , 2016, 55
,
7464-7468.
13.
B. Xu, D. Bi, Y. Hua, P. Liu, M. Cheng, M. Grätzel, L. Kloo, A. Hagfeldt
and L. Sun, Energy Environ. Sci., 2016, , 873-877.
Conclusions
9
14.
A. Molina-Ontoria, I. Zimmermann, I. Garcia-Benito, P. Gratia, C.
Roldan-Carmona, S. Aghazada, M. Graetzel, M. K. Nazeeruddin and
N. Martin, Angew. Chem., Int. Ed., 2016, 55, 6270-6274.
In summary, 2,3-dicyano-fluoranthene is first prepared
through a new and facile synthetic method based on Diels-
Alder reaction. We find fluoranthene could be an ideal building
15.
I. Zimmermann, J. Urieta-Mora, P. Gratia, J. Aragó, G. Grancini, A.
Molina-Ontoria, E. Ortí, N. Martín and M. K. Nazeeruddin, Adv.
block for designing D-A type dopant-free HTMs with low
synthetic cost and compatible energy levels with perovskites
through rational molecular design. The detailed crystal
Energy Mater., 2017, 7, 1601674.
16.
I. García-Benito, I. Zimmermann, J. Urieta-Mora, J. Aragó, A. Molina-
structure analysis indicates the resulting molecules with
Ontoria, E. Ortí, N. Martín and M. K. Nazeeruddin, J. Mater. Chem. A,
dicyano-substituted fluoranthene as the core present highly
ordered and strong molecular packing in solid states, and in
2017, 5, 8317-8324.
17.
Y. Liu, Z. Hong, Q. Chen, H. Chen, W. H. Chang, Y. M. Yang, T. B. Song
and Y. Yang, Adv. Mater., 2016, 28, 440-446.
particular, BTF4 forms a quasi-three-dimensional herringbone
assembly, leading to a much higher hole mobility up to 10-4
cm2V-1s-1 than that of spiro-OMeTAD. Encouragingly, our
18.
S. Kazim, F. J. Ramos, P. Gao, M. K. Nazeeruddin, M. Grätzel and S.
Ahmad, Energy Environ. Sci., 2015, 8, 1816-1823.
designed molecules can be applied on planar PVSCs as efficient
19.
S. Paek, P. Qin, Y. Lee, K. T. Cho, P. Gao, G. Grancini, E. Oveisi, P.
Gratia, K. Rakstys, S. A. Al-Muhtaseb, C. Ludwig, J. Ko and M. K.
Nazeeruddin, Adv. Mater., 2017, 29, 1606555.
dopant-free HTMs yielding high device performance, including
efficiency and stability. For BTF4, impressive PCEs of 18.03%
and 17.01% have been achieved for conventional and inverted
20.
P. Qin, H. Kast, M. K. Nazeeruddin, S. M. Zakeeruddin, A. Mishra, P.
cells, respectively. Therefore, our work not only develops a
Bäuerle and M. Grätzel, Energy Environ. Sci., 2014, 7, 2981-2985.
general material design-strategy to achieve efficient dopant-
21.
P. Qin, S. Paek, M. I. Dar, N. Pellet, J. Ko, M. Gratzel and M. K.
Nazeeruddin, J. Am. Chem. Soc., 2014, 136, 8516-8519.
free HTMs for PVSCs, but also provides a new synthetic
method to obtain functionalized fluoranthenes.
22.
M. Cheng, Y. Li, M. Safdari, C. Chen, P. Liu, L. Kloo and L. Sun,
Adv.Energy Mater., 2017,
M. Cheng, B. Xu, C. Chen, X. Yang, F. Zhang, Q. Tan, Y. Hua, L. Kloo
and L. Sun, Adv. Energy Mater., 2015, , 1401720.
7, 1602556.
23.
Acknowledgements
5
This work is funded by National Science Foundation of China
24.
M. Cheng, C. Chen, X. Yang, J. Huang, F. Zhang, B. Xu and L. Sun,
Chem. Mater., 2015, 27, 1808-1814.
(Grant No. 21704030). Z. Li and H-L. Yip thank the financial
support from the National 1000 Young Talents Program hosted
25.
X. Sun, D. Zhao and Z. Li, Chin. Chem. Lett., 2017, DOI:
10.1016/j.cclet.2017.09.038.
by China. We would like to thank the Analytical and Testing
Center and Research Core Facilities for Life Science in HUST for
26.
Y. Wang, Z. Zhu, C.-C. Chueh, A. K. Y. Jen and Y. Chi, Adv. Energy
using their facilities. Dr. Xianggao Meng (Central China Normal
Mater., 2017, 7, 1700823.
University) is also appreciated for his help on X-ray structure
27.
L. Cali, S. Kazim, M. Graetzel and S. Ahmad, Angew. Chem., Int. Ed.,
2016, 55, 2-26.
refinement.
28.
C. Chen, M. Cheng, P. Liu, J. Gao, L. Kloo and L. Sun, Nano Energy,
2016, 23, 40-49.
Notes and references
29.
M. Cheng, K. Aitola, C. Chen, F. Zhang, P. Liu, K. Sveinbjörnsson, Y.
Hua, L. Kloo, G. Boschloo and L. Sun, Nano Energy, 2016, 30, 387-397.
Y. Liu, Q. Chen, H.-S. Duan, H. Zhou, Y. Yang, H. Chen, S. Luo, T.-B.
1.
2.
3.
M. A. Green, A. Ho-Baillie and H. J. Snaith, Nat. Photonics, 2014, 8,
506-514.
30.
S. T. Williams, A. Rajagopal, C. C. Chueh and A. K. Jen, J. Phys. Chem.
Lett., 2016, , 811-819.
Song, L. Dou, Z. Hong and Y. Yang, J. Mater. Chem. A, 2015, 3, 11940-
7
11947.
L. Meng, J. You, T.-F. Guo and Y. Yang, Acc. Chem. Res., 2016, 49, 155-
165.
6 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins