and lipoylchloride (1.46 g, 6.465 mmol) dissolved in C H (25 mL), and stirred for 5 h at room temperature as a precipitate
6
6
formed. The precipitate was filtered off. The filtrate was evaporated. The residue was chromatographed over Al O
2
3
1
(
C H –CHCl eluent) to afford 2 (1.23 g, 82.0%) as a yellowish-green thick oil. Í NMR spectrum (400 MHz, DMSO-d , δ,
6
6
3
6
ppm): 1.13–1.25 (2Í, m, Í-15), 1.31–1.96 (14Í, m, 2Í-14, 3, 4, 8, 9, Í-5, 6, 21ax, 7ax), 2.25–2.29 (3Í, m, Í-13, 13, 7eq),
.40–2.44 (1Í, m, Í-21eq), 2.72–2.79 (4Í, m, Í-2, 10), 3.04–3.16 (2Í, m, Í-20), 3.49–3.56 (1Í, m, Í-17), 4.14–4.19 (1Í,
2
1
3
m, Í-11ax), 4.31–4.35 (1Í, m, Í-11eq). C NMR spectrum (100 MHz, DMSO-d , δ, ppm): 21.22 (Ñ-2), 24.80 (Ñ-9), 25.07
6
(
(
Ñ-8), 27.05 (Ñ-14), 28.88 (Ñ-4), 29.69 (Ñ-15), 34.28 (Ñ-13, 7), 34.70 (Ñ-16), 37.96 (Ñ-5), 38.58 (Ñ-20), 40.29 (Ñ-21), 56.43
Ñ-17), 57.39 (Ñ-2, 10), 63.64 (Ñ-11), 64.43 (Ñ-6), 173.56 (Ñ-12). HMQC NMR spectrum ( H– C): Í –Ñ (1.23, 24.89),
1
13
8
8
1
5
15
14àõ 14
4
4
3eq
3
8
8
14eq 14
Í –Ñ (1.21, 29.81), Í
–Ñ (1.36, 27.06), Í –Ñ (1.43, 29.15), Í –Ñ (1.67, 21.36), Í –Ñ (1.71, 25.06), Í
–Ñ
1
6
16
5
5
21àõ 21
21eq 21
2àõ,10àõ 2,10
(
(
(
1.78, 26.96), Í –Ñ (1.66, 34.57), Í –Ñ (1.84, 37.98), Í
–Ñ (1.90, 40.12), Í
–Ñ (2.41, 40.42), Í
–Ñ
1.92, 57.05), Í2
4.16, 63.64), Í11eq–Ñ11 (4.30, 63.76).
X-ray Crystal Structure Analysis (XSA) of 1. Cell constants and intensities of 3296 reflections (2509 independent,
eq,10eq 2,10
–Ñ
(2.78, 57.42), Í –Ñ (1.98, 64.33), Í13,7–Ñ
6
6
13,7
(2.27, 34.30), Í –Ñ (3.55, 56.40), Í
17 17
11àõ
–Ñ11
Rint = 0.0309) were measured on an Xcalibur Ruby diffractometer (Oxford Diffraction) (Cu Kα-radiation, graphite
monochromator, ω-scanning, 3.86° ≤ θ ≤ 76.02°) at 293 K. The crystals were monoclinic, a = 8.4783(5), b = 8.7702(6),
°
° 3
3
c = 11.9317(7) A , β = 106.471(6)°, V = 850.80(9) A , Z = 2 (C H NO ), space group P2 , d = 1.557 g/cm ,
calcd
μ = 0.124 mm .
1
9
25
2
1
–
1
The structure of 1 was solved by direct methods. Positions of nonhydrogen atoms were refined using anisotropic
full-matrix least-squares methods. H atoms were positioned geometrically and refined isotropically with fixed positional and
thermal parameters (rider model). The calculations used 1477 independent reflections with I ≥ 2σ(I). The number of refined
parameters was 200. The final agreement parameters were R = 0.0673, wR = 0.1606 ([reflections with I ≥ 2σ(I)], and
1
2
R = 0.1100, wR = 0.1950 (all reflections), GooF = 1.057. The structure was solved and refined using SHELXS-97 [9] and
1
2
SHELXL-97 programs [10]. XSA data were deposited as a CIF file in the Cambridge Crystallographic Data Centre
CCDC 1869785).
(
REFERENCES
1.
R. T. Tlegenov, D. N. Dalimov, Kh. Kh. Khaitbaev, A. A. Abduvakhabov, and K. U. Uteniyazov, Chem. Nat. Compd.,
6, 434 (1990).
2
2.
A. A. Abduvakhabov, R. Tlegenov, Kh. Kh. Khaitbaev, G. I. Vaizburg, D. N. Dalimov, and K. U. Uteniyazov,
Chem. Nat. Compd., 26, 60 (1990).
3.
A. A. Abduvakhabov, K. Toremuratov, Kh. A. Aslanov, V. B. Leont′ev, S. I. Mukhamedkhanova, and A. S. Sadykov,
Izv. Akad. Nauk SSSR, Ser. Khim., 1, 219 (1973).
4.
M. Peres, M. Lamot, et al., RU Pat. No. 2,440,997, “Cinnamoyl-piperazine derivatives and their application as PAR-1
antagonists,” Jul. 27, 2012; Byull., No. 3.
5.
A. A. Savchenko, E. N. Anisimova, A. G. Borisov, and A. E. Kondakov, Vitamins as a Basis for Immunometabolic
Therapy [in Russian], KrasGMU, Krasnoyarsk, 2011, 213 pp.
6.
A. E. Koziol, M. Gdaniec, and Z. Kosturkiewicz, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.,
3
6, 980 (1980).
F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, and R. Taylor, J. Chem. Soc., Perkin Trans.
, 19 (1987).
A. E. Koziol, Z. Kosturkiewicz, and H. Podkowinska, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.,
4, 3491 (1978).
7.
2
8.
3
9
.
G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr. (Suppl.), 64, 112 (2008).
G. M. Sheldrick, SHELXL-97, Program for the Refinement of Crystal Structures, University of Goettingen,
Germany, 1997.
10.
508