Organometallics
Article
(31) Zhang, T.; Manna, K.; Lin, W. Metal−Organic Frameworks
Stabilize Solution-Inaccessible Cobalt Catalysts for Highly Efficient
Broad-Scope Organic Transformations. J. Am. Chem. Soc. 2016, 138,
3241−3249.
(32) Song, Y.; Li, Z.; Ji, P.; Kaufmann, M.; Feng, X.; Chen, J. S.;
Wang, C.; Lin, W. Metal−Organic Framework Nodes Support Single-
Site Nickel(II) Hydride Catalysts for the Hydrogenolysis of Aryl
Ethers. ACS Catal. 2019, 9, 1578−1583.
(33) Canivet, J.; Aguado, S.; Schuurman, Y.; Farrusseng, D. MOF-
Supported Selective Ethylene Dimerization Single-Site Catalysts
through One-Pot Postsynthetic Modification. J. Am. Chem. Soc.
2013, 135, 4195−4198.
(49) Benito-Garagorri, D.; Kirchner, K. Modularly Designed
Transition Metal PNP and PCP Pincer Complexes Based on
Aminophosphines: Synthesis and Catalytic Applications. Acc. Chem.
Res. 2008, 41, 201−213.
(50) Selander, N.; Szabo, K. J. Catalysis by Palladium Pincer
Complexes. Chem. Rev. 2011, 111, 2048−2076.
(51) Gunanathan, C.; Milstein, D. Bond Activation and Catalysis by
Ruthenium Pincer Complexes. Chem. Rev. 2014, 114, 12024−12087.
(52) Werkmeister, S.; Neumann, J.; Junge, K.; Beller, M. Pincer-
Type Complexes for Catalytic (De)Hydrogenation and Transfer
(De)Hydrogenation Reactions: Recent Progress. Chem. - Eur. J. 2015,
21, 12226−12250.
(53) Kumar, A.; Bhatti, T. M.; Goldman, A. S. Dehydrogenation of
Alkanes and Aliphatic Groups by Pincer-Ligated Metal Complexes.
Chem. Rev. 2017, 117, 12357−12384.
(34) Feng, D.; Gu, Z.-Y.; Chen, Y.-P.; Park, J.; Wei, Z.; Sun, Y.;
Bosch, M.; Yuan, S.; Zhou, H.-C. A Highly Stable Porphyrinic
Zirconium Metal−Organic Framework with Shp-a Topology. J. Am.
Chem. Soc. 2014, 136, 17714−17717.
(54) Bauer, G.; Hu, X. Recent Developments of Iron Pincer
Complexes for Catalytic Applications. Inorg. Chem. Front. 2016, 3,
741−765.
̌
(35) Metzger, E. D.; Brozek, C. K.; Comito, R. J.; Dinca, M.
Selective Dimerization of Ethylene to 1-Butene with a Porous
(55) Junge, K.; Papa, V.; Beller, M. Cobalt−Pincer Complexes in
Catalysis. Chem. - Eur. J. 2019, 25, 122−143.
Catalyst. ACS Cent. Sci. 2016, 2, 148−153.
̌
(36) Metzger, E. D.; Comito, R. J.; Hendon, C. H.; Dinca, M.
(56) Peris, E.; Crabtree, R. H. Key Factors in Pincer Ligand Design.
Chem. Soc. Rev. 2018, 47, 1959−1968.
Mechanism of Single-Site Molecule-Like Catalytic Ethylene Dimeri-
zation in Ni-MFU-4l. J. Am. Chem. Soc. 2017, 139, 757−762.
(37) Ji, P.; Solomon, J. B.; Lin, Z.; Johnson, A.; Jordan, R. F.; Lin, W.
Transformation of Metal−Organic Framework Secondary Building
Units into Hexanuclear Zr-Alkyl Catalysts for Ethylene Polymer-
ization. J. Am. Chem. Soc. 2017, 139, 11325−11328.
(38) Bosch, M.; Zhang, M.; Zhou, H.-C. Increasing the Stability of
Metal-Organic Frameworks. Adv. Chem. 2014, 2014, 1−8.
(39) Howarth, A. J.; Liu, Y.; Li, P.; Li, Z.; Wang, T. C.; Hupp, J. T.;
Farha, O. K. Chemical, Thermal and Mechanical Stabilities of Metal−
Organic Frameworks. Nat. Rev. Mater. 2016, 1, 15018.
(40) Reiner, B. R.; Mucha, N. T.; Rothstein, A.; Temme, J. S.; Duan,
P.; Schmidt-Rohr, K.; Foxman, B. M.; Wade, C. R. Zirconium Metal−
Organic Frameworks Assembled from Pd and Pt PNNNP Pincer
Complexes: Synthesis, Postsynthetic Modification, and Lewis Acid
Catalysis. Inorg. Chem. 2018, 57, 2663−2672.
(41) Burgess, S. A.; Kassie, A.; Baranowski, S. A.; Fritzsching, K. J.;
Schmidt-Rohr, K.; Brown, C. M.; Wade, C. R. Improved Catalytic
Activity and Stability of a Palladium Pincer Complex by Incorporation
into a Metal−Organic Framework. J. Am. Chem. Soc. 2016, 138,
1780−1783.
(42) He, J.; Waggoner, N. W.; Dunning, S. G.; Steiner, A.; Lynch, V.
M.; Humphrey, S. M. A PCP Pincer Ligand for Coordination
Polymers with Versatile Chemical Reactivity: Selective Activation of
CO2 Gas over CO Gas in the Solid State. Angew. Chem., Int. Ed. 2016,
55, 12351−12355.
(43) Rimoldi, M.; Nakamura, A.; Vermeulen, N. A.; Henkelis, J. J.;
Blackburn, A. K.; Hupp, J. T.; Stoddart, J. F.; Farha, O. K. A Metal−
Organic Framework Immobilised Iridium Pincer Complex. Chem. Sci.
2016, 7, 4980−4984.
(44) He, J.; Bohnsack, A. M.; Waggoner, N. W.; Dunning, S. G.;
Lynch, V. M.; Kaska, W. C.; Humphrey, S. M. 1-D and 2-D
Phosphine Coordination Materials Based on a Palladium(II) PCP
Pincer Metalloligand. Polyhedron 2018, 143, 149−156.
(45) Li, Z.; Rayder, T. M.; Luo, L.; Byers, J. A.; Tsung, C.-K.
Aperture-Opening Encapsulation of a Transition Metal Catalyst in a
Metal−Organic Framework for CO2 Hydrogenation. J. Am. Chem.
Soc. 2018, 140, 8082−8085.
(46) Reiner, B. R.; Kassie, A. A.; Wade, C. R. Unveiling Reactive
Metal Sites in a Pd Pincer MOF: Insights into Lewis Acid and Pore
Selective Catalysis. Dalton Trans. 2019, 48, 9588−9595.
(47) Kassie, A. A.; Duan, P.; McClure, E. T.; Schmidt-Rohr, K.;
Woodward, P. M.; Wade, C. R. Postsynthetic Metal Exchange in a
Metal−Organic Framework Assembled from Co(III) Diphosphine
Pincer Complexes. Inorg. Chem. 2019, 58, 3227−3236.
(48) van der Boom, M. E.; Milstein, D. Cyclometalated Phosphine-
Based Pincer Complexes: Mechanistic Insight in Catalysis, Coordi-
nation, and Bond Activation. Chem. Rev. 2003, 103, 1759−1792.
(57) Li, H.; Zheng, B.; Huang, K.-W. A New Class of PN3-Pincer
Ligands for Metal−Ligand Cooperative Catalysis. Coord. Chem. Rev.
2015, 293−294, 116−138.
(58) Li, H.; Gonca̧ lves, T. P.; Lupp, D.; Huang, K.-W. PN3(P)-
Pincer Complexes: Cooperative Catalysis and Beyond. ACS Catal.
2019, 9, 1619−1629.
(59) Gunanathan, C.; Milstein, D. Metal−Ligand Cooperation by
Aromatization−Dearomatization: A New Paradigm in Bond Activa-
tion and “Green” Catalysis. Acc. Chem. Res. 2011, 44, 588−602.
(60) Khusnutdinova, J. R.; Milstein, D. Metal-Ligand Cooperation.
Angew. Chem., Int. Ed. 2015, 54, 12236−12273.
(61) Gibson, D. H.; Pariya, C.; Mashuta, M. S. Synthesis and
Characterization of Ruthenium(II) Hydrido and Hydroxo Complexes
Bearing the 2,6-Bis(Di-Tert-Butylphosphinomethyl)Pyridine Ligand.
Organometallics 2004, 23, 2510−2513.
(62) Luh, T.-Y. Trimethylamine N-Oxidea Versatile Reagent for
Organometallic Chemistry. Coord. Chem. Rev. 1984, 60, 255−276.
(63) Duren, T.; Millange, F.; Ferey, G.; Walton, K. S.; Snurr, R. Q.
Calculating Geometric Surface Areas as a Characterization Tool for
Metal-Organic Frameworks. J. Phys. Chem. C 2007, 111, 15350−
15356.
(64) Shearer, G. C.; Chavan, S.; Bordiga, S.; Svelle, S.; Olsbye, U.;
Lillerud, K. P. Defect Engineering: Tuning the Porosity and
Composition of the Metal−Organic Framework UiO-66 via
Modulated Synthesis. Chem. Mater. 2016, 28, 3749−3761.
(65) Gonca̧ lves, T. P.; Huang, K.-W. Metal−Ligand Cooperative
Reactivity in the (Pseudo)-Dearomatized PNx(P) Systems: The
Influence of the Zwitterionic Form in Dearomatized Pincer
Complexes. J. Am. Chem. Soc. 2017, 139, 13442−13449.
(66) Zhang, Y.; Chen, X.; Zheng, B.; Guo, X.; Pan, Y.; Chen, H.; Li,
H.; Min, S.; Guan, C.; Huang, K.-W.; Zheng, J. Structural Analysis of
Transient Reaction Intermediate in Formic Acid Dehydrogenation
Catalysis Using Two-Dimensional IR Spectroscopy. Proc. Natl. Acad.
Sci. U. S. A. 2018, 115, 12395−12400.
(67) Park, S.; Brookhart, M. Hydrosilylation of Carbonyl-Containing
Substrates Catalyzed by an Electrophilic η1-Silane Iridium(III)
Complex. Organometallics 2010, 29, 6057−6064.
̈
́
(68) Metsanen, T. T.; Hrobarik, P.; Klare, H. F. T.; Kaupp, M.;
Oestreich, M. Insight into the Mechanism of Carbonyl Hydro-
silylation Catalyzed by Brookhart’s Cationic Iridium(III) Pincer
Complex. J. Am. Chem. Soc. 2014, 136, 6912−6915.
́
́
́
(69) Raya-Baron, A.; On
̃
a-Burgos, P.; Fernandez, I. Iron-Catalyzed
Homogeneous Hydrosilylation of Ketones and Aldehydes: Advances
and Mechanistic Perspective. ACS Catal. 2019, 9, 5400−5417.
́
(70) Iglesias, M.; Fernandez-Alvarez, F. J.; Oro, L. A. Non-Classical
Hydrosilane Mediated Reductions Promoted by Transition Metal
Complexes. Coord. Chem. Rev. 2019, 386, 240−266.
I
Organometallics XXXX, XXX, XXX−XXX