J . Org. Chem. 1996, 61, 3055-3060
3055
Ch em ica l a n d Electr och em ica l Asym m etr ic Dih yd r oxyla tion of
Olefin s in I2-K2CO3-K2OsO2(OH)4 a n d I2-K3P O4/
K2HP O4-K2OsO2(OH)4 System s w ith Sh a r p less’ Liga n d
Sigeru Torii,*,† Ping Liu,† Narayanaswamy Bhuvaneswari,† Christian Amatore,‡ and
Anny J utand‡
Department of Applied Chemistry, Faculty of Engineering, Okayama University, Okayama 700, J apan,
and Ecole Normale Superieure, Departement de Chimie, URA CNRS 1679, 24 rue Lhomond,
75231 Paris Cedex 05, France
Received December 1, 1995X
Iodine-assisted chemical and electrochemical asymmetric dihydroxylation of various olefins in I2-
K2CO3-K2OsO2(OH)4 and I2-K3PO4/K2HPO4-K2OsO2(OH)4 systems with Sharpless’ ligand provided
the optically active glycols in excellent isolated yields and high enantiomeric excesses. Iodine (I2)
was used stoichiometrically for the chemical dihydroxylation, and good results were obtained with
nonconjugated olefins in contrast to the case of potassium ferricyanide as a co-oxidant. The
potentiality of I2 as a co-oxidant under stoichiometric conditions has been proven to be effective as
an oxidizing mediator in electrolysis systems. Iodine-assisted asymmetric electro-dihydroxylation
of olefins in either a t-BuOH/H2O(1/1)-K2CO3/(DHQD)2PHAL-(Pt) or t-BuOH/H2O(1/1)-K3PO4/
K2HPO4/(DHQD)2PHAL-(Pt) system in the presence of potassium osmate in an undivided cell was
investigated in detail. Irrespective of the substitution pattern, all the olefins afforded the diols in
high yields and excellent enantiomeric excesses. A plausible mechanism is discussed on the basis
of cyclic voltammograms as well as experimental observations.
In tr od u ction
potassium chlorate5a and hydrogen peroxide5b were the
first to be introduced, but in some cases these reagents
led to diminished yields of diols due to overoxidation.
Subsequently, some organic co-oxidants such as alkaline
tert-butyl hydroperoxide6 and N-ethylmorpholine N-ox-
ide7 were introduced, which afforded comparatively better
results. Recently, potassium ferricyanide in combination
with potassium carbonate has been demonstrated to be
a powerful system for osmium-catalyzed asymmetric
dihydroxylation of olefins.8-10 The effective chiral ligands
for enantioselective dioxyosmylation of olefins have been
investigated in detail.11 Among the reported asymmetric
dihydroxylation systems, an H2O/t-BuOH-K3Fe(CN)6/
Asymmetric induction has been frequently used in
syntheses of optically active natural products and biologi-
cally active compounds since the asymmetric centers
present in these compounds may be provided by chiral
transfer to readily available prochiral moieties.1 The
synthetic strategy is mostly left to the imagination of
chemists and not restricted by the availability of certain
starting materials. Among the most prominent examples
of asymmetric reactions, the “Sharpless process” for the
asymmetric dihydroxylation of olefinic compounds is
widely recognized in recent years.2 Our efforts in this
field have led to the establishment of chemical and
electrocatalytic asymmetric dihydroxylation of olefins
featured by (1) novel co-oxidant systems for conjugated
olefins as well as nonconjugated terminal olefins, (2) the
use of less amount of the co-oxidant, and (3) performing
the electrolysis in an undivided cell.
Criegee’s pioneering work3 showed that osmium tet-
raoxide in a stoichiometric amount could be used for
effective cis-dihydroxylation of olefins and that this
method is more reliable than other diol syntheses despite
its high cost and toxicity. Catalytic hydroxylation4
emerged in the field due to the growing economical
requirement. Inorganic co-oxidants such as sodium or
(5) (a) Hofmann, K. A. Chem. Ber. 1912, 45, 3329. (b) Milas, N. A.;
Trepagnier, J . H.; Nolan, J . T., J r.; Iliopulos, M. I. J . Am. Chem. Soc.
1959, 81, 4730.
(6) Sharpless, K. B.; Akashi, K. J . Am. Chem. Soc. 1976, 98, 1986.
(7) (a) Schneider, W. P.; McIntosh, A. V. U.S. Patent 2,769,824, Nov
6, 1956; Chem. Abstr. 1956, 51, 8822e. (b) Van Rheenen, V.; Kelly, R.
C.; Cha, D. Y. Tetrahedron Lett. 1976, 1973.
(8) Minato, M.; Yamamoto, K.; Tsuji, J . J . Org. Chem. 1990, 55, 766.
(9) (a) Gao, Y.; Charles, M. Z. U.S. Patent 5,302,257, Apr 12, 1994;
Chem. Abstr. 1994, 120, 119437j. (b) Amundsen, A. R.; Balko, E. N. J .
Appl. Electrochem. 1992, 22, 810.
(10) Torii, S.; Liu, P.; Tanaka, H. Chem. Lett. 1995, 319.
(11) (a) Hentges, S. G.; Sharpless, K. B. J . Am. Chem. Soc. 1980,
102, 4263. (b) Sharpless, K. B.; Amberg, W.; Beller, M.; Chen, H.;
Harturg, J .; Kawanami, Y.; Lu¨bben, D.; Manoung, E.; Ogino, Y.;
Shibata, T.; Ukita, T. J . Org. Chem. 1991, 56, 4585. (c) Sharpless, K.
B.; Amberg, W.; Bennani, Y. L.; Crispino, G. A.; Hartung, J .; J eong,
K.-S.; Kwong, H.-L.; Morikawa, K.; Wang, Z.-M.; Xu, D.; Zhang, X.-L.
J . Org. Chem. 1992, 57, 2768. (d) Andersson, P. G.; Sharpless, K. B.
J . Am. Chem. Soc. 1993, 115, 7047. (e) Wang, S.-M.; Kakiuchi, K.;
Sharpless, K. B. J . Org. Chem. 1994, 59, 6895. (f) Becker, H.; King, S.
B.; Taniguchi, M.; Vanhessche, K. P. M.; Sharpless, K. B. J . Org. Chem.
1995, 60, 3940. (g) Tomioka, K.; Nakajima, M.; Koga, K. J . Am. Chem.
Soc. 1987, 109, 6213. (h) Tomioka, K.; Nakajima, M.; Iitaka, Y.; Koga,
K. Tetrahedron Lett. 1988, 29, 573. (i) Yamada, T.; Narasaka, K. Chem.
Lett. 1986, 131. (j) Tokles, M.; Snyder, J . K. Tetrahedron Lett. 1986,
27, 3951. (k) Hirama, M.; Oishi, T.; Ito, S. J . Chem. Soc., Chem.
Commun. 1989, 665. (l) Annunziata, R.; Cinquini, M.; Cozzi, F.;
Raimondi, L.; Stefanelli, S. Tetrahedron Lett. 1987, 28, 3139. (m) Corey,
E. J .; J ardine, P. D.; Virgil, S.; Yuen, P.-W.; Connell, R. D. J . Am. Chem.
Soc. 1989, 111, 9243. (n) King, S. B.; Sharpless, K. B. Tetrahedron
Lett. 1994, 35, 5611.
* Tel:
81-86-251-8072.
Fax:
81-86-255-3424.
E-mail:
toriiken@cc.okayama-u.ac.jp.
† Okayama University.
‡ URA CNRS 1679.
X Abstract published in Advance ACS Abstracts, April 1, 1996.
(1) For a review, see: (a) Asymmetric Catalysis in Organic Synthesis;
Noyori, R.; Wiley-Interscience Publications: New York, 1993. (b)
Catalytic Asymmetric Synthesis; Ojima, I., Ed.; VCH Publications: New
York, 1993. (c) Berrisford, D. J .; Bolm, C.; Sharpless, K. B. Angew.
Chem., Int. Ed. Engl. 1995, 34, 1059.
(2) Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Chem. Rev.
1994, 94, 2483.
(3) (a) Criegee, R. J ustus Liebigs Ann. Chem. 1936, 522, 75. (b)
Criegee, R. Angew. Chem. 1937, 50, 153. (c) Criegee, R. Angew. Chem.
1938, 51, 519. (d) Criegee, R.; Marchand, B.; Wannowis, H. J ustus
Liebigs Ann. Chem. 1942, 550, 99.
(12) Mukaiyama, T.; Imagawa, K.; Yamada, T.; Takai, T. Chem. Lett.
1992, 231.
(4) Schroder, M. Chem. Rev. 1980, 80, 187.
S0022-3263(95)02137-2 CCC: $12.00 © 1996 American Chemical Society