been used extensively to modulate various biologically active
motifs.12 As reported here, we have also demonstrated reagent
versatility in steps (i) and (iii) suggesting this protocol is
suitable for library generation.
Solution-Phase Isoxazolocyclobutanone Synthesis. In a
preliminary solution-phase study (Scheme 1), treatment of
Scheme 1. Solution-Phase Studies
Figure 1. Traceless sulfone linker strategies.
dition,9 and (iv) traceless product release by cyclobutanol
f cyclobutanone oxidation with concomitant linker cleavage
by sulfinate elimination (Figure 2). The resulting products
Figure 2. Sulfinate SPOS route to cyclobutanones and cyclobuten-
ones.
allyl phenyl sulfone with o-methoxybenzaldehyde oxime and
NaOCl (the Huisgen method13 for in situ nitrile oxide
generation) gave isoxazolinosulfone 2 in good yield (80%).
Attempts to R-alkylate this isoxazolinosulfone (LDA or
nBuLi in THF) resulted only in decomposition. Likewise,
treating allyl phenyl sulfone with LDA followed by addition
of propylene oxide resulted in vinyl sulfone 4 as the sole
product instead of the anticipated allyl sulfone 3. These
observations led us to investigate first effecting sulfone R,R-
dialkylation (i.e., cyclobutyl formation) and then proceeding
with the 1,3-dipolar cycloaddition. Thus, 3-benzensulfonyl-
3-vinylcyclobutanol (5)4 was reacted with p-methoxyben-
zaldehyde oxime and NaOCl to give 1,3-dipolar cycloadduct
6 in 81% yield. On the basis of our experience14 and others,15
we were not surprised to find that 1,3-dipolar cycloaddition
(12/15/18) may provide useful molecular scaffolds for library
production10 as four-member ring-containing compounds are
both prevalent in nature and useful as building blocks for
further transformations.11 Moreover, these SPOS products
contain isoxazoline or isoxazole heterocycles, which have
(9) 1,3-Dipolar Cycloaddition Chemistry; Padwa, A., Ed.; Wiley: New
York, 1984; Vols. 1 and 2.
(10) (a) Fauchere, J. L.;, Henlin, J. M.; Boutin, J. A. Analysis 1997, 25,
97. (b) Neustadt, B. R.; Smith, E. M.; Nechuta, T.; Zhang, Y. Tetrahedron
Lett. 1998, 39, 5317. (c) Pryor, K. E.; Shipps, W., Jr.; Skyler, D. A.; Rebek,
J., Jr. Tetrahedron 1998, 54, 4107. (d) del Fresno, M.; Alsina, J.; Royo,
M.; Barany, G.; Albericio, F. Tetrahedron Lett. 1998, 39, 2639.
(11) (a) Nemoto, H.; Fukumoto, K. Synlett 1997, 863. (b) Okuma, K.;
Tsubakihara, K.; Tanaka, Y.; Koda, G. Tetrahedron Lett. 1995, 36, 5591.
(c) Frimer, A.; Weiss, J.; Gottlieb, H.; Wolk, J. J. Org. Chem. 1994, 59,
780. (d) Dzhemilev, U. M.; Khusnutdinov, R. I.; Tolstikov, G. A. J.
Organomet. Chem. 1991, 409, 15. (e) Lee-Ruff, E. AdV. Strain Org. Chem.
1991, 1, 167. (d) Oppolzer, W. Acc. Chem. Res. 1982, 15, 135. (e) Moore,
H. W.; Yerxa, B. R. AdV. Strain Org. Chem. 1995, 4, 81. (f) Bellus, D.;
Ernst, B. Angew. Chem., Int. Ed. Engl. 1988, 27, 797. (g) Danheiser, R. L.;
Gee, S. K.; Perez, J. J. J. Am. Chem. Soc. 1986, 108, 806. (h) Kowalski, C.
J.; Lal, G. S. J. Am. Chem. Soc., 1988, 110, 3693. (I) Allan, R. D.; Hanrahan,
J. R.; Hambley, T. W.; Johnston, G. A.; Mewett, K. N.; Mitrovic, A. D. J.
Med. Chem. 1990, 33, 2905.
(12) (a) Khalil, M. A.; Maponya, M. F.; Ko, D.-H.; You, Z.; Oriaku, E.
T.; Lee, H. J. Med. Chem. Res. 1996, 6, 52. (b) Groutas, W. C.;
Vnkataraman, R.; Chong, L. S.; Yooder, J. E.; Epp, J. B.; Stanga, M. A.;
Kim, E.-H. Bioorg. Med. Chem. 1995, 3, 125. (c) Levin, J. I.; Chan, P. S.;
Coupet, J.; Bailey, T. K.; Vice, G.; Thibault, L.; Lai, F.; Venkatesan, A.
M.; Cobuzzi, A. Bioorg. Med. Chem. Lett. 1994, 4, 1703. (d) Simoni, D.;
Manfredini, S.; Tabrizi, M. A.; Bazzanini, R.; Guarneri, M.; Ferroni, R.;
Tranielo, F.; Nastruzzi, C.; Feriotto, G.; Gambari, R. Top. Mol. Org. Eng.
1991, 8, 119.
(13) Huisgen, R. Angew. Chem., Int. Ed. Engl. 1963, 2, 565.
742
Org. Lett., Vol. 4, No. 5, 2002