F.L. Bleken et al. / Applied Catalysis A: General 447–448 (2012) 178–185
185
aforementioned peculiarities: lower BA sites density, huge diffu-
sion length, absence of crystal twinning, presence of EFAL. Fig. 4
tempts to summarize an eventually favored alkene methylation-
cracking cycle over large ZSM-5F crystals. Further studies are under
progress to evaluate the exact nature of the coke formed over these
zeolites. In addition, we aim to deeper investigate via a multi-
nuclear NMR study the structure of ZSM-5 zeolites prepared in
fluoride medium.
[16] A.G. Gayubo, A.T. Aguayo, M. Olazar, R. Vivanco, J. Bilbao, Chem. Eng. Sci. 58
(2003) 5239–5249.
[17] J.F. Haw, W. Song, D.M. Marcus, J.B. Nicholas, Acc. Chem. Res. 36 (2003) 317–326.
[18] F.C. Patcas, J. Catal. 231 (2005) 194–200.
ˇ
[19] I. Stich, J.D. Gale, K. Terakura, M.C. Payne, J. Am. Chem. Soc. 121 (1999)
3292–3302.
[20] H.A. Zaidi, K.K. Pant, Catal. Today 96 (2004) 155–160.
[21] M. Bjørgen, U. Olsbye, S. Kolboe, J. Catal. 215 (2003) 30–44.
[22] B.P.C. Hereijgers, F. Bleken, M.H. Nilsen, S. Svelle, K.P. Lillerud, M. Bjorgen, B.M.
Weckhuysen, U. Olsbye, J. Catal. 264 (2009) 77–87.
[23] S. Ivanova, C. Lebrun, E. Vanhaecke, C. Pham–Huu, B. Louis, J. Catal. 265 (2009)
1–7.
5. Conclusions
[24] Z. Liu, C. Sun, G. Wang, Q. Wang, G. Cai, Fuel Process. Technol. 62 (2000)
161–172.
[25] G.A. Olah, A. Goeppert, G.K.S. Prakash, Beyond Oil and Gas: The Methanol Econ-
omy, Wiley-VCH, Weinheim, 2006.
[26] G. Qi, Z. Xie, W. Yang, S. Zhong, H. Liu, C. Zhang, Q. Chen, Fuel Process. Technol.
88 (2007) 437–441.
[27] D. Chen, K. Moljord, T. Fuglerud, A. Holmen, Microporous Mesoporous Mater.
29 (1999) 191–203.
[28] S. Ivanova, E. Vanhaecke, B. Louis, S. Libs, M.J. Ledoux, S. Rigolet, C. Marichal,
Ch. Pham, F. Luck, C. Pham-Huu, ChemSusChem 1 (2008) 851–857.
[29] S. Ivanova, B. Louis, B. Madani, J.P. Tessonnier, M.J. Ledoux, C. Pham-Huu, J. Phys.
Chem. C 111 (2007) 4368–4374.
[30] S. Ivanova, B. Louis, M.J. Ledoux, C. Pham-Huu, J. Am. Chem. Soc. 129 (2007)
3383–3391.
[31] S. Svelle, F. Joensen, J. Nerlov, U. Olsbye, K.P. Lillerud, S. Kolboe, M. Bjorgen, J.
Am. Chem. Soc. 128 (2006) 14770–14771.
[32] K.P. Moller, W. Bohringer, A.E. Schnitzler, E. van Stehen, C.T. O’Connor, Micro-
porous Mesoporous Mater. 29 (1999) 127–144.
Different ZSM-5 zeolites possessing various crystal sizes and
acid site densities were synthesized and thoroughly characterized
by BET, XRD, SEM, FT-IR and H/D exchange techniques.
Their catalytic activities were evaluated in the Methanol to
Olefins (MTO) reaction with the objective to maximize the pro-
pylene selectivity.
A high propylene to ethylene ratios (∼5) was achieved over
ZSM-5F catalyst prepared via the fluoride route. The superior selec-
tivity of this promising MTP-catalyst was tentatively ascribed to the
lower density of strong Brønsted acid sites in combination with a
long diffusion pathway and few crystal defects.
[33] A.G. Gayubo, P.L. Benito, A.T. Aguayo, M. Olazar, J. Bilbao, J. Chem. Technol.
Biotechnol. 65 (1996) 186–192.
Acknowledgments
[34] A.H. Tullo, Chem. Eng. News March (2012) 10–14.
[35] C.D. Chang, C.T.-W. Chu, R.F. Socha, J. Catal. 86 (1984) 289–296.
[36] D. Prinz, L. Riekert, Appl. Catal. 37 (1988) 139–154.
[37] C. Mei, P. Wen, Z. Liu, H. Liu, Y. Wang, W. Yang, Z. Xie, W. Hua, Z. Gao, J. Catal.
258 (2008) 243–249.
[38] T.S. Zhao, T. Takemoto, N. Tsubaki, Catal. Commun. 7 (2006) 647–650.
[39] J. Liu, C.X. Zhang, Z.H. Shen, W. Hua, Y. Tang, W. Shen, Y.H. Yue, H.L. Xu, Catal.
Commun. 10 (2009) 1506–1509.
[40] H.S. Yun, S.E. Kim, Y.T. Hyeon, Chem. Commun. (2007) 2139–2141.
[41] H.S. Yun, S.E. Kim, Y.T. Hyun, S.J. Heo, J.W. Shin, Chem. Mater. 19 (2007)
6363–6366.
[42] B. Louis, P. Reuse, L. Kiwi-Minsker, A. Renken, Appl. Catal. A 210 (2001) 103–109.
[43] F. Ocampo, H.S. Yun, M.M. Pereira, J.P. Tessonnier, B. Louis, Cryst. Growth Des.
9 (2009) 3721–3729.
MB and BL would like to thank the Agence Nationale de la
Recherche (ANR) for supporting financially the ANR-10-JCJC-0703
project (SelfAsZeo). FLB acknowledges the Research Council of
Norway for financial support through contract no. 171158/V30.
Appendix A. Supplementary data
Supplementary data associated with this article can be found,
[44] F. Ocampo, J.A. Cunha, M.R. de Lima Santos, J.P. Tessonnier, M.M. Pereira, B.
Louis, Appl. Catal. A 390 (2010) 102–109.
References
[45] B. Louis, S. Walspurger, J. Sommer, Catal. Lett. 93 (2004) 81–84.
[46] S. Walspurger, B. Louis, Appl. Catal. A 336 (2008) 109–115.
[47] A.J. Maia, B. Louis, Y.L. Lam, M.M. Pereira, J. Catal. 269 (2010) 103–109.
[48] J. Arichi, B. Louis, Cryst. Growth Des. 8 (2008) 3999–4005.
[49] J. Kärger, D.M. Ruthven, In Diffusion in Zeolites and Other Microporous Solids,
John Wiley and Sons, New York, 1992.
[50] P.B. Venuto, Microporous Mater. 2 (1994) 297–411.
[51] B. Louis, A. Vicente, C. Fernandez, V. Valtchev, J. Phys. Chem. C 115 (2011)
18603–18610.
[52] N.Y. Chen, W.J. Reagan, J. Catal. 59 (1979) 123–129.
[53] M. Bjørgen, S. Svelle, F. Joensen, J. Nerlov, S. Kolboe, F. Bonino, L. Palumbo, S.
Bordiga, U. Olsbye, J. Catal. 249 (2007) 195–207.
[54] T.Y. Park, G.F. Froment, Ind. Eng. Chem. Res. 40 (2001) 4172–4186.
[55] W. Wu, W. Guo, W. Xiao, M. Luo, Chem. Eng. Sci. 66 (2011) 4722–4732.
[56] J.L. Guth, H. Kessler, J.M. Higel, J.M. Lamblin, J. Patarin, A. Seive, J.M. Chezeau,
R. Wey, Zeolite synthesis, in: ACS Symp. Ser. 398, American Chemical Society,
Washington, DC, 1989, p. 176.
[57] M. Estermann, L.B. McCusker, C. Baerlocher, A. Merrouche, H. Kessler, Nature
352 (1991) 320–323.
[58] P. Caullet, J.L. Paillaud, A. Simon-Masseron, M. Soulard, J. Patarin, C. R. Chimie
8 (2005) 245–266.
[59] E. Aubert, F. Porcher, M. Souhassou, V. Petricek, C. Lecomte, J. Phys. Chem. B
106 (2002) 1110–1117.
[60] G. Laugel, X. Nitsch, F. Ocampo, B. Louis, Appl. Catal. A 402 (2011) 139–145.
[1] M.P. Pileni, Acc. Chem. Res. 40 (2007) 685–693.
[2] J.M. Thomas, J.C. Hernandez-Garrido, R. Raja, R.G. Bell, Phys. Chem. Chem. Phys.
11 (2009) 2799–2825.
[3] B. Louis, G. Laugel, P. Pale, M.M. Pereira, ChemCatChem 3 (2011) 1263–1272.
[4] A. Corma, Chem. Rev. 95 (1995) 559–614.
[5] H. Pines, Chemistry of Catalytic Hydrocarbon Conversion, Academic Press, New
York, 1981.
[6] C.D. Chang, A.J. Silvestri, J. Catal. 47 (1977) 249–259.
[7] C.D. Chang, Catal. Rev. Sci. Eng. 25 (1983) 1–118.
[8] S. Kvisle, T. Fuglerud, S. Kolboe, U. Olsbye, K.P. Lillerud, B.V. Vora, in: H. Ertl, H.
Knözinger, F. Schüth, J. Weitkamp (Eds.), Handbook of Heterogeneous Catalysis,
vol. 6, Wiley–VCH, Weinheim, 2008, pp. 2950–2965.
[9] F.J. Keil, Microporous Mesoporous Mater. 29 (1999) 49–66.
[10] M. Stöcker, Microporous Mesoporous Mater. 29 (1999) 3–48.
[11] J. Cobb, in: G. Connell (Ed.), New Zealand Synfuel, vol. 1, Cobb/Horwood Publi-
cations, Auckland, New Zealand, 1995.
[12] J. Topp-Jørgensen, Stud. Surf. Sci. Catal. 36 (1988) 293–305.
[13] H. Koempel, W. Liebner, Stud. Surf. Sci. Catal. 167 (2007) 261–267.
[14] J.Q. Chen, A. Bozzano, B. Glover, T. Fuglerud, S. Kvisle, Catal. Today 106 (2005)
103–107.
[15] U. Olsbye, S. Svelle, M. Bjørgen, P. Beato, T.V.W. Janssens, F. Joensen, S. Bordiga,
K.P. Lillerud, Angew. Chem. Int. Ed. 51 (2012) 5810–5831.