Page 5 of 7
Jou al of Materials Chemistry A
Pr nl ease do not adjust margins
DOI: 10.1039/C5TA08603E
Journal Name
COMMUNICATION
alcohol adsorption (Figure 5d), consistent with the high activity
of MoO3-x nanobelt observed in experiments.
Chen, Z. Y. Zhou, F. X. Ruan, Z. L. Yang, N. F. Zheng, Nat.
Nanotechnol. 2011, 6, 28-32.
Y. F. sun, Z. H. sun, s. Gao, H. Cheng, Q. H. Liu, J. Y. Piao, T.
7
8
Based on the experimental and calculated results, it can be
rationally concluded that the oxygen vacancies contained in
the ultrathin nanobelts play a crucial role in the formation of
Yao, C. Z. Wu, S. L. Hu, S. Q. Wei, Y. Xie, Nat. Commun. 2012
, 1057.
H. H. Duan, N. Yan, R. Yu, C. R. Chang, G. Zhou, H. S. Hu, H.
,
3
C
3
H
6
, which may markedly increase the number of catalytically
P. Rong, Z. Q. Niu, J. J. Mao, H. Asakura, T. Tanaka, P. J.
Dyson, J. Li1, Y. D. Li, Nat. Commun. 2014, 5, 3093.
H. H. Li, S. Zhao, M. Gong, C. H. Cui, D. He, H. W. Liang, L.
Wu, S. H. Yu, Angew. Chem. Int. Ed. 2013, 52, 7472-7476.
S. Hu, H. L. Liu, P. P. Wang, X. Wang, J. Am. Chem. Soc.
2013, 135, 11115-11124.
active sites on their surfaces and facilitate the adsorption of
organic molecules on these sites. From the point of view of
catalytic kinetics, the stronger adsorption between oxygen
vacancy and isopropyl alcohol molecule may generate
9
1
0
unexpected affinity interaction, and therefore, reduces the 11 a) L. Q. Mai, B. Hu, W. Chen, Y. Y. Qi, C. S. Lao, R. Yang, Y.
Dai, Z. L. Wang, Adv. Mater. 2007, 19, 3712-3716.
reactive barrier of the dehydration reaction. At the same time,
1
1
2 a) J. He, H. l. Liu, B. Xu, X. Wang, Small 2014, 11, 1144–1149;
b) S. Hu, X. Wang, Chem. Soc. Rev. 2013, 42, 5577-5594.
the strong LSPR effect result from the large quantity of oxygen
vacancies make the oxygen vacancies-rich MoO3-x nanobelts
highly efficient photocatalytic conversion agent. As we known,
3
4
5
Z. Y. Yin, X. Zhang, Y. Q. Cai, J. Chen, J. I. Wong, Y. Y. Tay, J.
W. Chai, J. Wu, Z. Y. Zeng, B. Zheng, H. Y. Yang, H, Zhang,
Angew. Chem. Int. Ed. 2014, 53, 12560-12565.
S. Balendhran, S. Walia, H. Nili, J. Z. Ou, S. Zhuiykov, R. B.
Kaner, S. Sriram1, M. Bhaskaran, K. Kalantar-zadeh, Adv.
Funct. Mater. 2013, 23, 3952-3970.
3
5
the instantaneous temperature of LSPRs can reach 1000K,
1
1
which offers enough energy for the isopropyl alcohol
dehydration reaction.
To evaluate stability of the MoO3-x ultrathin nanobelts, the
reaction was allowed to proceed for a total 30 h with
X. W. Lou, H. C. Zeng, J. Am. Chem. Soc. 2003, 125, 2697-
2704.
intermittent evacuation every 5 h. Continuous C
3
H
6
evolution 16
N. Pinna, M. Niederberger, Angew. Chem. Int. Ed. 2008
7, 5292-5304.
S. Hu, X. Wang, J. Am. Chem. Soc. 2008, 130, 8126-8127.
S. Balendhran, S. Walia, M. Alsaif, E. P. Nguyen, J. Z. Ou, S.
Zhuiykov, S. Sriram, M. Bhaskaran, K. Kalantar-zadeh, ACS
Nano, 2013, 7, 9753-9760.
,
4
with no apparent decrease in its photocatalytic activity was
clearly observed (Figure S13). After the reactions, the structure
and morphology of the catalysts is not apparently change
1
1
7
8
(Figure S14-15).
1
2
9
0
Q. Q. Huang, S. Hu, J. Zhuang, X. Wang, Chem. Eur. J. 2012
8, 15283-15287.
D. L. Chen, M. N. Liu, L. Yin, T. Li, Z. Yang, X. J. Li, B.
B. Fan, H. L. Wang, R. Zhang, Z. X. Li, H. L. Xu, H. X. Lu,
D. Y. Yang, J. Sune, L. Gao, J. Mater. Chem. 2011, 21, 9332-
342.
J. A. Lopez-Sanchez1, N. Dimitratos, C. Hammond, G. L.
Brett, L. Kesavan, S. White, P. Miedziak, R. Tiruvalam, R. L.
Jenkins, A. F. Carley, D. Knight, C. J. Kiely, G. J. Hutchings,
Nat. Chem. 2011, 3, 551-556.
,
1
Conclusions
In summary, ultrathin MoO3-x nanobelts were successfully
synthesized by a very simple one-pot solution method. The
ultrathin nanobelts contain a large number of oxygen
vacancies, which lead them to possess much strong visible-
LSPR absorption and greatly enhanced photocurrent responses
9
2
1
under UV light, visible light, and even NIR light irradiation. As a 22 T. Nutz, M. Haase, J. Phys. Chem. B 2000, 104, 8430.
2
2
2
3
4
5
H. F. Cheng, T. Kamegawa, K. Mori, H. Yamashita, Angew.
Chem. Int. Ed. 2014, 53, 2910.
J. M. Luther, P. K. Jain, T. Ewers, A. P. Alivisatos, Nat.
Mater. 2011, 10, 361–366.
D. Dorfs, T. Härtlin, K. Miszta, N. C. Bigall, M. R. Kim, A.
Genovese, A. Falqui, M. Povia, L. Manna, J. Am. Chem. Soc.
result, the oxygen vacancy-rich MoO3-x nanobelts show a
remarkable capability of photocatalytic dehydration of
3 6
isopropyl alcohol into C H under visible light irradiation. This
work presents not only a possibility for the use of ultrathin
MoO3-x nanobelts as a efficient photocatalyst in the synthetic
chemistry of olefins but also an important concept that
oxygen-vacancy-rich nonstoichiometric simple oxides can be
used as a new strategy to design materials with high light
harvesting and photocatalytic activity.
2
011, 133, 11175–11180.
2
2
6
7
S. W. Hsu , K. On, A. R. Tao, J. Am. Chem. Soc. 2011, 133,
9072–19075.
I. Kriegel,C. Y. Jiang,J. Rodríguez-Fernandez,R. D. Schaller,
1
D. V. Talapin, E. da Como, J. Feldmann, J. Am. Chem. Soc.
2
012, 134, 1583–1590.
L. W. Chou, N. Shin, S. V. Sivaram, M. A. Filler, J. Am. Chem.
2
2
3
3
8
9
0
1
Soc. 2012, 134, 16155–16158.
K. Manthiram, A. P. Alivisatos, J. Am. Chem. Soc. 2012, 134,
Notes and references
1
2
J. Goldemberg, Science 2007, 315, 808.
G. W. Huber, S. Iborra, A. Corma, Chem. Rev. 2006, 106,
3
995–3998.
G. C. Xi, S. X. Ouyang, P. Li, J. H. Ye, Q. Ma, N. Su, H. Bai, C.
4
044.
J. N. Chheda, J. A. Dumesic, Catal. Today 2007, 123, 59.
G. A. Deluga, J. R. Salge, L. D. Schmidt, X. E. Verykios,
Wang, Angew. Chem. Int. Ed. 2012, 51, 2395–2399.
T. R. Gordon, M. Cargnello, T. Paik, F. Mangolini, R. T.
3
4
Weber, P. Fornasiero, C. B. Murray, J. Am. Chem. Soc. 2012
34, 6751-6761.
R. Buonsanti, A. Llordes, S. Aloni, B. A. Helms, D. J. Milliron,
,
Science 2004, 303, 993.
I. Takahara, M. Saito, M. Inaba, K. Murata, Catal. Lett.
1
5
6
3
3
3
2
3
4
2005, 105, 64.
Nano Lett. 2011, 11, 4706–4710.
a) J. M. Sun, K. K. Zhu, F. Gao, C. M. Wang, J. Liu, C. H. F.
Peden, Y. Wang, J. Am. Chem. Soc. 2011, 133, 11096–11099;
b) P. Liu, E. J. M. Hensen, J. Am. Chem. Soc. 2013, 135,
F. C. Lei, Y. F. Sun, K. T. Liu, S. Gao, L. Liang, B. C. Pan, Y.
Xie, J. Am. Chem. Soc. 2014, 136, 6826-6829.
J. Q. Yan, T. Wang, G. J. Wu, W. L. Dai, N. J. Guan, L. D. Li, J.
L. Gong, Adv. Mater. 2015, 27, 1580.
1
1
4032–14035; c) J. M. Sun, Y. Wang, ACS Catal. 2014, 4,
078–1090; d) X. Q. Huang, S. H. Tang, X. L. Mu, Y. Dai, G. X.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 5
Please do not adjust margins