10.1002/chem.201701902
Chemistry - A European Journal
FULL PAPER
Figure 5. TOF (h-1) in isopropanol dehydration vs CO of [Ir(CO)2] (cm-1)
fragment grafted on the Zr-oxide node of NU-1000, on Al-NU-1000, and on Si-
NU-1000.
2012, 51, 4887-4890; b) J. Jiang, O. M. Yaghi, Chem. Rev. 2015, 115,
6966-6997.
[4]
a) F. Vermoortele, R. Ameloot, A. Vimont, C. Serre, D. De Vos, Chem.
Commun. 2011, 47, 1521-1523; b) F. Vermoortele, B. Bueken, G. Le
Bars, B. Van de Voorde, M. Vandichel, K. Houthoofd, A. Vimont, M.
Daturi, M. Waroquier, V. Van Speybroeck, C. Kirschhock, D. E. De Vos,
J. Am. Chem. Soc. 2013, 135, 11465-11468; c) M. J. Katz, J. E.
Mondloch, R. K. Totten, J. K. Park, S. B. T. Nguyen, O. K. Farha, J. T.
Hupp, Angew. Chem., Int. Ed. 2014, 53, 497-501; d) J. E. Mondloch, M.
J. Katz, W. C. Isley, III, P. Ghosh, P. Liao, W. Bury, G. W. Wagner, M.
G. Hall, J. B. De Coste, G. W. Peterson, R. Q. Snurr, C. J. Cramer, J. T.
Hupp, O. K. Farha, Nat. Mater. 2015, 14, 512-516; e) J. Jiang, F.
Gandara, Y.-B. Zhang, K. Na, O. M. Yaghi, W. G. Klemperer, J. Am.
Chem. Soc. 2014, 136, 12844-12847.
Conclusion
Atomic layer deposition, a vapor-phase deposition method, has
been used to post-synthetically incorporate SiOx units into a Zr-
based MOF. This approach combines the advantages of
solvent-free reaction conditions with precise atomic control of
the incorporation of desired functional sites. In the present
system, the confinement of the SiOx units in the small windows
of the framework (less than 1 nm in size) is pivotal in preserving
their nanometer structure, a feature we believe plays a relevant
role in conferring their unusual properties. Despite the catalytic
inactivity of bulk silicon oxide, Si-NU-1000 surpasses the activity
in an acid catalyzed reaction of an analogous aluminum-based
MOF and -alumina. The unexpected activity of Si-NU-1000 is
corroborated by X-ray photoelectron spectroscopy data and
determining its electron donating properties. These results also
demonstrate that silicon oxide atomic layer deposition into a Zr-
MOF can be efficiently used to post-synthetically modify a MOF
to enhance its acidity.
[5]
[6]
a) S. M. George, Chem. Rev. 2010, 110, 111-131; b) B. J. O’Neill, D. H.
K. Jackson, J. Lee, C. Canlas, P. C. Stair, C. L. Marshall, J. W. Elam, T.
F. Kuech, J. A. Dumesic, G. W. Huber, ACS Catal. 2015, 1804-1825; c)
H. Van Bui, F. Grillo, J. R. van Ommen, Chem. Commun. 2017, 53, 45-
71.
a) J. W. Elam, D. Routkevitch, P. P. Mardilovich, S. M. George, Chem.
Mater. 2003, 15, 3507-3517; b) C. Detavernier, J. Dendooven, S.
Pulinthanathu Sree, K. F. Ludwig, J. A. Martens, Chem. Soc. Rev. 2011,
40, 5242-5253; c) S. P. Sree, J. Dendooven, T. I. Koranyi, G.
Vanbutsele, K. Houthoofd, D. Deduytsche, C. Detavernier, J. A.
Martens, Catal. Sci. Technol. 2011, 1, 218-221; d) D. H. K. Jackson, B.
J. O’Neill, J. Lee, G. W. Huber, J. A. Dumesic, T. F. Kuech, ACS Appl.
Mater. Interfaces 2015, 7, 16573-16580; e) K. Leus, J. Dendooven, N.
Tahir, R. Ramachandran, M. Meledina, S. Turner, G. Van Tendeloo, J.
Goeman, J. Van der Eycken, C. Detavernier, P. Van Der Voort,
Nanomaterials 2016, 6, 45.
Acknowledgements
[7]
[8]
J. E. Mondloch, W. Bury, D. Fairen-Jimenez, S. Kwon, E. J. DeMarco,
M. H. Weston, A. A. Sarjeant, S. T. Nguyen, P. C. Stair, R. Q. Snurr, O.
K. Farha, J. T. Hupp, J. Am. Chem. Soc. 2013, 135, 10294-10297.
a) I. S. Kim, J. Borycz, A. E. Platero-Prats, S. Tussupbayev, T. C.
Wang, O. K. Farha, J. T. Hupp, L. Gagliardi, K. W. Chapman, C. J.
Cramer, A. B. F. Martinson, Chem. Mater. 2015, 27, 4772-4778; b) L. C.
Gallington, I. S. Kim, W.-G. Liu, A. A. Yakovenko, A. E. Platero-Prats, Z.
Li, T. C. Wang, J. T. Hupp, O. K. Farha, D. G. Truhlar, A. B. F.
Martinson, K. W. Chapman, J. Am. Chem. Soc. 2016, 138, 13513-
13516; c) S. Ahn, N. E. Thornburg, Z. Li, T. C. Wang, L. C. Gallington,
K. W. Chapman, J. M. Notestein, J. T. Hupp, O. K. Farha, Inorg. Chem.
2016, 55, 11954-11961; d) M. Rimoldi, V. Bernales, J. Borycz, A.
Vjunov, L. C. Gallington, A. E. Platero-Prats, I. S. Kim, J. L. Fulton, A. B.
F. Martinson, J. A. Lercher, K. W. Chapman, C. J. Cramer, L. Gagliardi,
J. T. Hupp, O. K. Farha, Chem. Mater. 2017, 29, 1050-1068.
This work was supported as part of the Inorganometallic
Catalysis Design Center, an Energy Frontier Research Center
funded by the U.S. Department of Energy, Office of Science,
Basic Energy Sciences under Award #DE-SC0012702. This
work made use of the EPIC, Keck-II, QBIC, and Clean Catalysis
facilities of Northwestern University. This research used
resources of the Advanced Photon Source, a U.S. Department
of Energy (DOE) Office of Science User Facility operated for the
DOE Office of Science by Argonne National Laboratory under
Contract No. DE-AC02-06CH11357. M.R. was supported by the
Swiss National Science Foundation with an “Early
Postdoc.Mobility Fellowship”.
[9]
a) J. W. Klaus, O. Sneh, S. M. George, Science 1997, 278, 1934-1936;
b) J. D. Ferguson, E. R. Smith, A. W. Weimer, S. M. George, J.
Electrochem. Soc. 2004, 151, G528-G535; c) B. B. Burton, S. W. Kang,
S. W. Rhee, S. M. George, J. Phys. Chem. C 2009, 113, 8249-8257; d)
Y. Tomczak, K. Knapas, S. Haukka, M. Kemell, M. Heikkilä, M. Ceccato,
M. Leskelä, M. Ritala, Chem. Mater. 2012, 24, 3859-3867.
Keywords: metal-organic framework, nanocluster, atomic layer
deposition, silicon oxide, gas flow catalysis.
[1]
[2]
a) J. M. Thomas, Design and Application of Single-Site Heterogeneous
Catalysts, Imperial College Press, London, 2012; b) A. Corma, Chem.
Rev. 1995, 95, 559-614; c) M. Guisnet, N. S. Gnep, S. Morin,
Microporous Mesoporous Mater. 2000, 35–36, 47-59; d) A. Corma, J.
Catal. 2003, 216, 298-312; e) B. Smit, T. L. M. Maesen, Nature 2008,
451, 671-678; f) J. Sun, Y. Wang, ACS Catal. 2014, 4, 1078-1090.
a) J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, J. T.
Hupp, Chem. Soc. Rev. 2009, 38, 1450-1459; b) A. Corma, H. García,
F. X. Llabrés i Xamena, Chem. Rev. 2010, 110, 4606-4655; c) Y. Bai, Y.
Dou, L.-H. Xie, W. Rutledge, J.-R. Li, H.-C. Zhou, Chem. Soc. Rev.
2016, 45, 2327-2367; d) M. Rimoldi, A. J. Howarth, M. R. DeStefano, L.
Lin, S. Goswami, P. Li, J. T. Hupp, O. K. Farha, ACS Catal. 2017, 997-
1014.
[10] M. Luhmer, J. B. d'Espinose, H. Hommel, A. P. Legrand, Magnetic
Resonance Imaging 1996, 14, 911-913.
[11] a) M. Lefenfeld, R. Hoch (SiGNa Chemistry Inc.), WO2011037681A1,
2011; b) K. Ramesh, A. Borgna, J. e. Zheng (Agency for Science,
Technology and Research), WO2011162717A1, 2011; c) B. C. Bailey,
F. L. W. Bolton, H. B. P. Gracey, H. M. K. Lee, B. S. R. Partington (BP
Chemicals Limited), 8 440 873 B2, 2013; d) H. Taheri, Y. Sarin, B.
Ozero (Petron Scientech Inc.), 20140179972A1, 2014; e) J. Forstner, S.
Unser, S. Boeringer (Fraunhofer-Gesellschaft zur Foerderung der
Angewandten Forschung), WO2015135641A1, 2015.
[12] Treatment at this temperature causes partial dehydration of the
zirconium oxide node of NU-1000.
[13] T. L. Barr, Zeolites 1990, 10, 760-765.
[3]
a) F. Vermoortele, M. Vandichel, B. Van de Voorde, R. Ameloot, M.
Waroquier, V. Van Speybroeck, D. E. De Vos, Angew. Chem., Int. Ed.
[14] M. Stöcker, Microporous Mater. 1996, 6, 235-257.
This article is protected by copyright. All rights reserved.