4
36
KHADZHIEV et al.
Table 6. Oxygenate conversion to lower olefins in the presence of the La–Zr–HZSM-5/Al O catalyst (P = 0.1 MPa, T =
2
3
−1
3
40°C, V = 4000 h , the data for 4 h on stream)
mix
Hydrocarbon selectivity, wt %
Σ С –С
olefins
2
5
Feed mixture
DME(30) + МеOH(30) + N (40)
Parameters
=
=
=
+
C2
C3
ΣC4
C paraffins
1
WDME = 4.6 h–1
WМеOH = 3.2 h–1
WDME = 4.0 h–1
WМеOH = 3.2 h–1
WH2O = 2.0 h–1
27.5
31.9
33.3
33.4
7.6
6.1
25.7
74.3
2
DME(30) + МеOH(30) + H O(40)
25.3
74.7
2
involved in the catalytic formation of ethylene and
propylene, while the DME conversion occurs on all
acid sites.
A postsynthesis high-temperature treatment of the
HZSM-5 zeolite and steaming the catalyst at 500°C
lead to a significant increase in the catalyst stability.
9. R. V. Dmitriev, D. P. Shevchenko, E. S. Shpiro, et al.,
Stud. Surf. Sci. Catal. 69, 381 (1991).
10. D. Freeman, R. P. K. Wells, and G. J. Hutschings, J.
Catal. 205, 358 (2002).
1
1. N. V. Kolesnichenko, T. I. Goryainova, E. N. Biryu-
kova, et al., Pet. Chem. 51, 55 (2011).
1
2. M. N. Mikhailov, V. B. Kazansky, and L. M. Kustov,
The presence of steam in the feedstock has differ-
ent effects on the catalytic properties of the zeolite cat-
alysts. Thus, for La–Zr–HZSM-5/Al O , the pres-
Catal. Lett. 116, 81 (2007).
1
3. G. M. Zhidomirov, A. A. Shubin, V. B. Kazansky, and
2
3
R. A. van Santen, Theor. Chem. Acc. 114, 90 (2005).
ence of steam leads to an increase in stability and
selectivity, while for Mg–HZSM-5/Al O , it provides
14. S. Borman, Chem. Eng. News 83, 15 (2005).
2
3
1
5. E. A. Stewart, D. W. Johnson, and M. D. Shannon,
an abrupt decrease in the selectivity for lower olefins
and the presence of a large amount of methanol in the
products.
Innov. Zeolite Mater. Sci. 37, 57 (1988).
1
6. L. N. Vosmerikova, A. I. Vagin, and A. V. Vosmerikov,
Neftepererab. Neftekhim. 2, 27 (2002).
The use of an equilibrium mixture of oxygenates
1
7. A. A. Kubasov, L. E. Kitaev, S. V. Malyshev, and
with steam (DME + MeOH + H O) as the feedstock
2
Yu. V. Novakovskaya, Moscow Univ. Chem. Bull. 65,
leads to an increase in the amount of ethylene in the
reaction products.
279 (2010).
1
8. G. Birke, H. Koempel, W. Liebner, and H. Bach, US
Patent No. 7923591 (2011).
1
9. G. G. McGlamery, Jr., J. H. Beech, Jr., M. P. Nicoletti,
ACKNOWLEDGMENTS
and C. F. van Egmond, US Patent No. 7989669 (2011).
This work was performed at the Topchiev Institute
of Petrochemical Synthesis, Russian Academy of Sci-
ences and supported by the Russian Science Founda-
tion. project no. 17-73-30046.
20. A. G. Bozzano, S. A. Bradley, R. L. Castillo, and
J. Q. Chen, US Patent No. 7763766. (2010)
21. W. Vermeiren and N. Nesterenko, US Patent
No. 8362183 (2013).
2
2. S. N. Khadzhiev, Cracking of Petroleum Fractions ob
Zeolite Catalysts (Khimiya, Moscow, 1982) [in Rus-
sian].
REFERENCES
1
2
3
4
5
6
. O. B. Braginskii, World Petrochemical Complex (Aca-
2
2
2
2
2
2
3. M. N. Shemanaeva, L. V. Mel’nik, S. I. Kryukov, et al.,
demia, Moscow, 2009) [in Russian].
RU Patent No. 2174113 (2001).
. Z. Hajjar, A. Khodadadi, Y. Mortazavi, et al., Fuel 179,
4. A. M. Al-Jarallah, U. A. El- Natafy, and M. M. Abdil-
79 (2016).
lahi, Appl. Catal., A 154, 117 (1997).
. N. V. Kolesnichenko, E. E. Kolesnikova, L. E. Kitaev,
et al., Pet. Chem. 52, 155 (2012).
. S. N. Khadzhiev, N. V. Kolesnichenko, and
N. N. Ezhova, Pet. Chem. 48, 325 (2008).
. S. Tamm, H. H. Ingelsten, M. Skoglundh, and
A. E. C. Palmqvist, J. Catal. 276, 402 (2010).
. Kh. M. Minachev and A. A. Dergachev, Izv. Akad.
Nauk, Ser. Khim., No. 6, 1018 (1993).
5. H. Baltes, H. Litterer, E. I. Leupold, and F. Wunder,
Deutsche Offenlegungsschrift DE, 3141283 (1983).
6. U. Dettmeier, H. Baltes, H. Litterer, et al., Chem. Ing.
Technol. 54, 593 (1982).
7. W. J. H. Dehertog and G. F. Froment, Appl. Catal. 71,
193 (1991).
8. G. Cai, G. Chen, Q. Wang, et al., Zeolites, Ed. by
B. Drzaj, S. Hocevar, and S. Pejovnik (Elsevier,
Amsterdam, 1985), p. 319.
7. D. Seddon, Catal. Today 6, 351 (1990).
8
. V. R. Choudhary, S. Banerjee, and P. Devadas, J. 29. I. Balkrishnan, B. S. Rao, S. G. Hegde, et al., J. Mol.
Catal. 205, 398 (2002).
Catal. 17, 261 (1982).
PETROLEUM CHEMISTRY
Vol. 59
No. 4
2019