Evaluation Only. Created with Aspose.PDF. Copyright 2002-2021 Aspose Pty Ltd.
Journal of the American Chemical Society
Communication
AUTHOR INFORMATION
■
Corresponding Authors
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
The research leading to these results has received funding from
the 7th EU Framework Programme for research, technological
development and demonstration under grant agreement no.
212281. P.B.B. thanks CNPq for financial support.
Figure 4. Structural studies of C65D PAMO: oxidized C65D PAMO
(green carbons) superposed on the Cys65-Asp66 side chains of wild-
type PAMO (magenta carbons). Carbon atoms of the FAD and NADP+
are in yellow and cyan, respectively. Asp65 is engaged in H-bonds with a
water molecule and the backbone nitrogen of Ala91, which are not
shown for sake of clarity. See also Figure S9 and Table S5 in the SI.
REFERENCES
■
(1) Faber, K. Biotransformation in Organic Chemistry; Springer Verlag:
Berlin, 2002; pp 177−219.
(2) (a) Kara, S.; Schrittwieser, J. H.; Hollmann, F.; Ansorge-
Schumacher, M. B. Appl. Microbiol. Biotechnol. 2014, 98, 1517.
(b) Weckbecker, A.; Groger, H.; Hummel, W. Adv. Biochem. Eng.
̈
Biotechnol. 2010, 120, 195.
H2O2.15,16 It is very difficult to assign specific causes for the small
change in the Asp66 conformation, which likely reflects the
altered balance of electrostatic, H-bonding, and van der Waals
interactions with nearby protein, cofactor, and solvent atoms
caused by the C65D mutation. However, it appears that the
properties of the C65D PAMO mutant can be ascribed mainly to
stabilization of this uncoupling-promoting conformation of
Asp66. Interestingly, introducing an aspartate at the same
position in sequence-related monooxygenases did not result in
the creation of efficient NADPH oxidases. This indicates that the
effect of the C65D mutation in PAMO is subtle and unique.
In this work we report on an enzyme activity switch,
converting a thermostable and solvent-tolerant monooxygenase
into an oxidase. Intriguingly, it was sufficient to mutate only one
amino acid in the parent enzyme to achieve this switch. The
observation that a single mutation in a flavoprotein mono-
oxygenase results in a drastic boost in uncoupling activity also
presents a warning for enzyme engineering approaches that
concern flavoproteins. Yet, the observation that similar
mutations in sequence-related monooxygenases did not yield
NADPH oxidases may suggest that PAMO is rather unique. In
fact, we have generated numerous PAMO mutants in previous
studies and never observed such high NADPH oxidase activities.
The generated PAMO-based robust NADPH oxidase represents
a useful biocatalyst for cofactor regeneration, as only very few
alternative (bio)catalysts are available.17 Several specific features
(thermostability, solvent tolerance, tight binding of the flavin
cofactor, ease of production) make the engineered NADPH
oxidase a promising candidate for biocatalytic processes.
Furthermore, the biocatalyst may also develop into a useful
tool in cell biology research because NADPH oxidase activities
are crucial in triggering signal transduction pathways.18 More-
over, intracellular NADPH levels are crucial regulators of
metabolism.19 The created NADPH oxidase may also develop
as a tool in metabolic engineering to manipulate the intracellular
NADP+/NADPH ratio.
(3) Kochius, S.; Magnusson, A. O.; Hollmann, F.; Schrader, J.;
Holtmann, D. Appl. Microbiol. Biotechnol. 2012, 93, 2251.
(4) (a) Rocha-Martín, J.; Vega, D.; Bolivar, J. M.; Godoy, C. A.;
́ ́
Hidalgo, A.; Berenguer, J.; Guisan, J. M.; Lopez-Gallego, F. BMC
Biotechnol. 2011, 11, 101. (b) Lountos, G. T.; Jiang, R.; Wellborn, W. B.;
Thaler, T. L.; Bommarius, A. S.; Orville, A. M. Biochemistry 2006, 45,
9648. (c) Riebel, B. R.; Gibbs, P. R.; Wellborn, W. B.; Bommarius, A. S.
Adv. Synth. Catal. 2002, 344, 1156. (d) Petschacher, B.; Staunig, N.;
Muller, M.; Schurmann, M.; Mink, D.; De Wildeman, S.; Gruber, K.;
Glieder, A. Comput. Struct. Biotechnol. J. 2014, DOI: 10.5936/
csbj.201402005.
(5) de Gonzalo, G.; Mihovilovic, M. D.; Fraaije, M. W. ChemBioChem
2010, 11, 2208.
(6) Sheng, D.; Ballou, D. P.; Massey, V. Biochemistry 2001, 40, 11156.
(7) Fraaije, M. W.; et al. Appl. Microbiol. Biotechnol. 2005, 66, 393.
(8) (a) Torres Pazmino, D. E.; Baas, B. J.; Janssen, D. B.; Fraaije, M. W.
Biochemistry 2008, 47, 4082. (b) Malito, E.; Alfieri, A.; Fraaije, M. W.;
Mattevi, A. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 13157. (c) Orru, R.;
Dudek, H. M.; Martinoli, C.; Torres Pazmino, D. E.; Royant, A.; Weik,
M.; Fraaije, M. W.; Mattevi, A. J. Biol. Chem. 2011, 286, 29284.
̈
̈
̃
̃
(9) (a) Torres Pazmino, D. E.; Snajdrova, R.; Rial, D. V.; Mihovilovic,
̃
M. D.; Fraaije, M. W. Adv. Synth. Catal. 2007, 349, 1361. (b) Parra, L. P.;
Agudo, R.; Reetz, M. T. ChemBioChem 2013, 14, 2301. (c) Dudek, H.
M.; Fink, M. J.; Shivange, A. V.; Dennig, A.; Mihovilovic, M. D.;
Schwaneberg, U.; Fraaije, M. W. Appl. Microbiol. Biotechnol. 2014, 98,
4009.
(10) Dudek, H. M.; Popken, P.; van Bloois, E.; Duetz, W. A.; Fraaije, M.
W. J. Biomol. Screen. 2013, 18, 678.
(11) Dudek, H. M.; de Gonzalo, G.; Pazmino, D. E.; Stepniak, P.;
Wyrwicz, L. S.; Rychlewski, L.; Fraaije, M. W. Appl. Environ. Microbiol.
2011, 77, 5730.
(12) Forneris, F.; Orru, R.; Bonivento, D.; Chiarelli, L. R.; Mattevi, A.
FEBS J. 2009, 276, 2833.
̃
(13) van Beek, H. L.; de Gonzalo, G.; Fraaije, M. W. Chem. Commun.
2012, 48, 3288.
(14) de Gonzalo, G.; Ottolina, G.; Zambianchi, F.; Fraaije, M. W.;
Carrea, G. J. Mol. Catal. B: Enzym. 2006, 39, 91.
(15) Martinoli, C.; Dudek, H. M.; Orru, R.; Edmondson, D. E.; Fraaije,
M. W.; Mattevi, A. ACS Catal. 2013, 3, 3058.
(16) Bach, R. D.; Mattevi, A. J. Org. Chem. 2013, 78, 8585.
(17) Maid, H.; Bohm, P.; Huber, S. M.; Bauer, W.; Hummel, W.; Jux,
̈
ASSOCIATED CONTENT
■
N.; Groger, H. Angew. Chem., Int. Ed. 2011, 50, 2397.
̈
S
* Supporting Information
(18) Lambeth, J. D. Nat. Rev. Immunol. 2004, 4, 181.
(19) (a) Kleijn, R. J.; Liu, F.; van Winden, W. A.; van Gulik, W. M.; Ras,
C.; Heijnen, J. J. Metab. Eng. 2007, 9, 112. (b) Fan, J.; Ye, J.; Kamphorst,
J. J.; Shlomi, T.; Thompson, C. B.; Rabinowitz, J. D. Nature 2014, 510,
298.
Primer sequences, steady-state kinetic data of the reported
enzymes, crystallographic statistics, and experimental details
concerning conversions. This material is available free of charge
16969
dx.doi.org/10.1021/ja508265b | J. Am. Chem. Soc. 2014, 136, 16966−16969