G. Wei et al. / Tetrahedron Letters 49 (2008) 5488–5491
5491
acid labile TBS group (entry 2020) and benzylidene group (entry 21)
References and notes
cannot be survive under this condition. More impressively, the
yield for removal of anomeric acetate from trisaccharide derivative
(entry 16) was significantly improved using FeCl3Á6H2O in CH3CN,
comparing to that of using NH3 in MeOH and THF co-solvent.21 No
significant amount of required products was observed using Fe2(S-
O4)3ÁxH2O in CH3CN or other apolar solvents (CH2Cl2, THF, etc.).
A typical experimental procedure is depicted as follows: To a
solution of 1-O-acyl protected sugar (1.0 mmol) in CH3CN (5 mL)
was added FeCl3Á6H2O (1–2 mmol), and the reaction mixture was
stirred under the appropriate conditions as mentioned in Table 2.
After reaction completion (monitored by TLC), the reaction mixture
was concentrated directly under diminished pressure, in case of
small-scale reaction, and the corresponding residue was further
purified on column chromatography. For large-scale preparation,
the reaction mixture was neutralized with saturated aqueous NaH-
CO3 first, and then centrifuged. The liquid phase was collected and
extracted with CH2Cl2 three times. The combined organic phase
was evaporated to dryness, and the residue was purified by column
chromatography to gain desired product.
In summary, we have demonstrated that FeCl3Á6H2O–CH3CN
system is highly efficient toward regioselective anomeric deacyl-
ation of carbohydrate derivatives. The mild reaction conditions,
experimental simplicity, low cost, excellent yield, convenience in
large scale preparation, and the environmental benign nature are
major advantages of this new approach. Most commonly used pro-
tecting groups are matching with current chemistry, and some
highly toxic and expensive reagents can be avoided. We expected
that this green complimentary method would provide a general
application in organic synthesis.
1. Schmidt, R. R.; Kinzy, W. Adv. Carbohydr. Chem. Biochem. 1994, 50, 21–23.
2. Caputo, R.; Kunz, H.; Mastroianni, D.; Palumbo, G.; Pedatella, S.; Solla, F. Eur. J.
Org. Chem. 1999, 3147–3150.
3. Yokoyama, M. Carbohydr. Res. 2000, 327, 5–14.
4. Excoffier, G.; Gagnaire, D.; Utille, J. P. Carbohydr. Res. 1975, 39, 368–373.
5. Watanbe, K.; Itoh, K.; Araki, Y.; Ishido, Y. Carbohydr. Res. 1986, 154, 165–176.
6. Nudelman, A.; Herzig, J.; Gottlieb, H. E.; Keinan, E.; Sterling, J. Carbohydr. Res.
1987, 162, 145–152.
7. Sambaiah, T.; Fanwick, P. E.; Cushman, M. Synthesis 2001, 1450–1452.
8. Conchie, J.; Levvy, G. A. Methods Carbohydr. Chem. 1963, 2, 345–347.
9. Mikano, M. Carbohydr. Res. 1989, 191, 150–153.
10. Rowell, R. M.; Feather, M. S. Carbohydr. Res. 1967, 4, 486–491.
11. Tiwari, P.; Misra, A. P. Tetrahedron Lett. 2006, 47, 3573–3576.
12. Tran, A. T.; Deydier, S.; Bonnaffé, D.; Narvor, C. L. Tetrahedron Lett. 2008, 49,
2163–2165.
13. Matta, K. L.; Bahl, O. P. Carbohydr. Res. 1972, 21, 460–464.
14. (a) Ikemoto, N.; Kim, O. K.; Lo, L. C.; Satyanarayana, V.; Chang, M.; Nakanish, K.
Tetrahedron Lett. 1992, 33, 4295–4298; (b) Rodebaugh, R.; Debenham, J. S.;
Fraser-Reid, B. Tetrahedron Lett. 1996, 37, 5477–5478; (c) Singh, P. P.; Gharia,
M. M.; Dasgupta, F.; Srivastava, H. C. Tetrahedron Lett. 1977, 18, 439–440; (d)
Ding, X.; Wang, W.; Kong, F. Carbohydr. Res. 1997, 303, 445–448; (e) Dasgupta,
F.; Singh, P. P.; Srivastava, H. C. Carbohydr. Res. 1980, 80, 346–349; (f) Sen, S. E.;
Roach, S. L.; Boggs, J. K.; Ewing, G. J.; Magrath, J. J. Org. Chem. 1997, 62, 6684–
6686; (g) Prasad, K. R.; Anbarasan, P. Tetrahedron: Asymmetry 2006, 17, 1146–
1151; (h) Kiso, M.; Anderson, L. Carbohydr. Res. 1985, 136, 309–323.
15. Toyokuni, T.; Cai, S.; Dean, B. Synthesis 1992, 1236–1238.
16. For 2,3,4-tri-O-benzoyl-6-O-(9-fluorenylmethoxycarbonyl)-
NMR (400 MHz, CDCl3): d 2.61 (br s, 1H, OH- ), 3.27 (br s, 0.2H, OH-b), 4.10–
4.39 (m, 6.4H), 4.62 (dd, 1H, J 3.7, 10 Hz, H-3 ), 4.76 (t, 1H, J 6.0 Hz, CH of Fmoc
), 4.82 (t, 0.2H, J 6.0 Hz, CH of Fmoc b), 5.70 (dd, 0.2H, J 3.2, 10 Hz, H-2b), 5.78
D
-galactopyranose: 1H
a
a
a
(dd, 1H, J 3.2, 10 Hz, H-2a), 6.01 (d, 1H, J 3.1 Hz, H-1a), 6.05 (d, 0.2H, J 3.6 Hz,
H-4b), 6.76 (d, 1H, J 3.7 Hz, H-4a), 7.30–8.13 (m, 27.6H, Ph). MALDITOF-MS:
calcd for C42H34O11: 714.21; found: 737.43 [M+Na]+.
17. Dullenkopf, W.; Castro-palomono, J. C.; Manzoni, L.; Schmidt, R. R. Carbohydr.
Res. 1996, 296, 135–147.
18. The exact structure was determined by 1H NMR spectrum of the derivative 2,3-
di-O-acetyl-4-O-levulinoyl-b-L
-idopyranupyranosyl trichloroacetimidate: 1H
NMR (400 MHz, CDCl3): d 2.15, 2.17, 2.19 (3s, 9H, 2Ac and CH3COCH2), 2.56–
2.61 (m, 2H, –CH2CH2CO–), 2.67–2.83 (m, 2H, –CH2CHaHbCO–), 3.82 (s, 3H,
COOCH3), 4.99 (d, 1H, J 2.1 Hz, H-5), 5.00 (dd, 1H, J 1.1, 2.5 Hz, H-2), 5.12–5.14
(m, 1H, H-4), 5.19 (t, 1H, J 2.4 Hz, H-3), 6.45 (s, 1H, H-1), 8.80 (s, 1H, C@NH).
19. Du, Y.; Wei, G.; Linhardt, R. J. J. Org. Chem. 2004, 69, 2206–2209.
20. Lubineau, A.; Bonnaffeꢀ, D. Eur. J. Org. Chem. 1999, 2523–2532.
Acknowledgment
This work was supported by NNSF of China (Projects 30701043,
20572128, 20621703, and 20732001).
21. Yang, F.; He, H.; Du, Y.; Lu, M. Carbohydr. Res. 2002, 337, 1165–1169.