Advanced Synthesis & Catalysis
10.1002/adsc.201801133
Innovation and Technology Funding (Project code:
GHP/008/17GD) for financial support.
We also evaulated the IDO inhibition effect of the
2
newly synthesized 3-fluoro-2-oxindole derivatives.
The starting material 12a (table 5, entry 1) shown
very poor effect on IDO
2
, while 13a inhibited IDO
2
References
substantially, indicating that α-fluorination is of
critical importance to increase bioactivity. Compared
to Indoximod, product 13a was capable of inhibiting
[
1]Selected examples of oxindole-containing bioactive
compounds: a) T. Jiang, K. L. Kuhen, K. Wolff, H. Yin,
K. Bieza, J. Caldwell, B. Bursulaya, T. Y.-H. Wu, Y.
He, Bioorg. Med. Chem. Lett. 2006, 16, 2105; b) F. C.
Stevens, W. E. Bloomquist, A. G. Borel. M. L. Cohen,
C. A. Droste, M. L. Heiman, A. Kriauciunas, D. J. Sall,
F. C. Tinsley, C. D. Jesudason, Bioorg. Med. Chem. Lett.
IDO
2
considerably (table 5, entry 2), while products
with moderate
1
3e, 13f and 13g could inhibit IDO
2
[7]
effect (table 5, entries 4−6). Elaboration of these
compounds is underway in order to develop potential
anti-cancer agents. The resulting products bearing
diverse functional groups allow for a rapid synthesis
of fluorine-containing bioactive molecules.
2
007, 17, 6270; c) B. Volk, J. Barkóczy, E. Hegedus, S.
Udvari, I. Gacsályi, T. Mezei, K. Pallagi, H. Kompagne,
G. Lévay, A. Egyed, J. L. G. Hársing, M. Spedding, G.
Simig, J. Med. Chem. 2008, 51, 2522; d) A. Fensome,
W. R. Adams, A. L. Adams, T. J. Berrodin, J. Cohen, C.
Huselton, A. Illenberger, J. C. Kern, V. A. Hudak, M. A.
Marella, E. G. Melenski, C. C. McComas, C. A.
Mugford, O.D. Slayden, M. Yudt, Z. Zhang, P. Zhang,
Y. Zhu, R. C. Winneker, J. E. Wrobel. J. Med. Chem.
2008, 51, 1861; e) P. Hewawasam, V. K. Gribkoff, Y.
Pendri, S. I. Dworetzky, N. A. Meanwell, E. Martinez,
C. G. Boissard, D. J. Post-Munson, J. T. Trojnacki, L.
M. Yeleswaram, K. Pajor, J. Knipe, Q. Gao, R. Perrone,
J. E. Starrett, Bioorg. Med. Chem. Lett. 2002, 12, 1023;
f) V. K. Gribkoff, J. E. Starrett, S. I. Dworetzky, P.
Hewawasam, C. G. Boissard, D. A. Cook, S. W. Frantz,
K. Heman, J. R. Hibbard, K. Huston, G. Johnson, B. S.
Krishnan, G. G. Kinney, L. A. Lombardo, N. A.
Meanwell, P. B. Molinoff, R. A. Myers, S. L. Moon, A.
Ortiz, L. Pajor, R. L. Pieschl, D. J. Post-Munson, L. J.
Signor, N. Srinivas, M. T. Taber, G. Thalody, J. T.
Trojnacki, H. Wiener, K. Yeleswaram, S. W. Yeola, Nat.
Med. 2001, 7, 471; g) B. Atkinson, D. Beattie, A. J.
Culshaw, J. Dale, N. J. Devereux, J. Mckenna,
Cyclohexyl amide derivatives as CRF receptor
antagonist. Patent WO2011092293 A2, Aug 4, 2011; h)
K. L. Spear, U. Campbell, Heterocyclic compounds and
methods of use thereof. Patent WO2014106238 A1, Jul
Table 5. Results of IDO
2
Inhibition Effect.
(µM)
Entry Compound IC50 of IDO
2
1
2
3
4
5
6
7
8
9
1
12a
13a
13c
13e
13f
13g
4q
>1000
16
>1000
102
278
81
>1000
>1000
>1000
4r
4s
0
Indoximod 465
In summary, we have developed an efficient and
highly enantioselective fluorination of 3-substituted
-oxindoles in the presence of chiral urea catalyst.
2
Various N-protected and N-unprotected tertiary 3-
oxindoles bearing diverse functionalities were
synthesized in excellent yields and high
enantioselectivities. The method herein substantially
broadens the scope of tertiary 3-fluoro-2-oxindoles,
which is beneficial to organic and medicinal
chemistry. Further studies to investigate the
bioactivities and elaboration of these products are
ongoing.
3
, 2014.
[
2]Selected examples of oxindole-containing natural
products: a) T. Kagata, S. Saito, H. Shigemori, A.
Ohsaki, H. Ishiyama, T. Kubota, J. I. Kobayashi, J. Nat.
Prod. 2006, 69, 1517; b) C. V. Galliford, K. A. Scheidt,
Angew. Chem. 2007, 119, 8902; Angew. Chem. Int. Ed.
2007, 46, 8748; c) S. E. Reisman, J. M. Ready, M. M.
Weiss, A. Hasuoka, M. Hirata, K. Tamaki, T. V.
Ovaska, C. J. Smith, J. L. Wood, J. Am. Chem. Soc.
2008, 130, 2087; d) Y. Yamada, M. Kitajima, N.
Kogure, H. Takayama, Tetrahedron 2008, 64, 7690.
Experimental Section
General Procedure for Enantioselevtive Fluorination.
To a EtOAc (6 mL) solution of 3-substituted oxindole
substrates 3 or 12 (0.2 mmol, 1.0 equiv) and catalyst 11g
(
15.0 mg, 0.03 mmol, 0.15 equiv) at room temperature,
was added Fluorobenzenesulfonimide (F1, NFSI) (75.6mg,
.24 mmol, 1.2 equiv). The resulting mixture was stirred at
0
room temperature and monitored by TLC. The solution
was diluted with water (5 mL) and extrated with EtOAc,
[3]a) K. Müller, C. Faeh, F. Diederich, Science 2007, 317,
1881; b) J. R. Wolstenhulme, V. Gouverneur, Acc.
Chem. Res. 2014, 47, 3560; c) S. Purser, P. R. Moore, S.
Swallow, V. Gouverneur, Chem. Soc. Rev. 2008, 37,
320; d) K. Mikami, Y. Itoh, M. Yamanaka, Chem. Rev.
dried over MgSO
was purified by flash column chromatography
hexane/EtOAc) to yield the corresponding 3-fluoro 3-
4
and concentrated in vacuo. The residue
(
functionalized oxindole products 4 or 13.
2
1
004, 104, 1; e) J.-A. Ma, D. Cahard, Chem. Rev. 2008,
08, PR1.
Acknowledgements
[
4]a) Y. Hamashima, T. Suzuki, H. Takano, Y. Shimura,
M. Sodeoka, J. Am. Chem. Soc. 2005, 127, 10164; b) N.
Shibata, J. Kohno, K. Takai, T. Ishimaru, S. Nakamura,
T. Toru, S. Kanemasa, Angew. Chem. 2005, 117, 4276;
We thank the Natural Science Foundation of Guangdong
Province (Grant No. 2017B050506006), National Natural
Science Foundation of China (Grant No. 21502068), and
4
This article is protected by copyright. All rights reserved.