Communication
ChemComm
only 40 amino metabolites were detected with dansyl chloride and 21435006) and the creative research group project (No.
derivatization and most of them were amino acids. Many 21321064) from the National Natural Science Foundation
amino metabolites could be found with the chemoselective of China.
nanoprobes, but were not observed with the dansyl chloride
derivatization such as methylamine, cyclohexylammonium and
dihydroxyindole. These amino metabolites usually participate
Notes and references
1 (a) K. D. Nguyen, Y. F. Qiu, X. J. Cui, Y. P. S. Goh, J. Mwangi,
in important physiological processes and their abnormal levels
might imply different physiological and pathological states.
In conclusion, the synthetic mSiO2@azobenzene–COOH chemo-
selective nanoprobes show several advantages including (i) metabolites
enrichment (captured and released by mSiO2@azobenzene–
COOH nanoprobes), (ii) chemoselectivity (coupling reagent-
catalyzed reaction between metabolites and solid supports),
(iii) derivatization on solid supports (specific structures with
high ionization efficiency tagged to metabolites). Compared
with the conventional dansyl chloride derivatization, mSiO2@
azobenzene–COOH nanoprobes presented high selectivity towards
amino groups and could further enhance the MS sensitivity of
amino metabolites by 1–2 orders of magnitude. Finally, the H4/D4
tagged mSiO2@azobenzene–COOH was successfully applied to
extract and explore amino metabolites from a small amount of
serum and 94 amino metabolites were found including many low
abundant amino metabolites. This newly developed method based
on the mSiO2@azobenzene–COOH nanoprobes was feasible and
practical in comprehensive qualitative/quantitative analysis of
amino metabolites, and it would be of great promise in the
exploration of unknown amino metabolites from very tiny and
precious samples. In the future, this derivatization strategy can
further be utilized for other metabolites such as carboxylic acids,
aldehyde-ketones, and phenols by changing the reactive groups on
azobenzene linkers.
T. David, L. Mukundan, F. Brombacher, R. M. Locksley and
A. Chawla, Nature, 2011, 480, 104–108; (b) R. A. Casero and
L. J. Marton, Nat. Rev. Drug Discovery, 2007, 6, 373–390.
2 (a) K. Guo, C. J. Ji and L. Li, Anal. Chem., 2007, 79, 8631–8638;
(b) Y. Song, Z. Quan, J. L. Evans, E. A. Byrd and Y. M. Liu, Rapid
Commun. Mass Spectrom., 2004, 18, 989–994; (c) B. A. Boughton,
D. L. Callahan, C. Silva, J. Bowne, A. Nahid, T. Rupasinghe, D. L. Tull,
M. J. McConville, A. Bacic and U. Roessner, Anal. Chem., 2011, 83,
7523–7530; (d) W. Yuan, K. W. Anderson, S. Li and J. L. Edwards, Anal.
Chem., 2012, 84, 2892–2899; (e) J. M. Armenta, D. F. Cortes,
J. M. Pisciotta, J. L. Shuman, K. Blakeslee, D. Rasoloson, O. Ogunbiyi,
D. J. Sullivan Jr and V. Shulaev, Anal. Chem., 2010, 82, 548–558.
3 (a) D. J. Trader and E. E. Carlson, Org. Lett., 2011, 13, 5652–5655;
(b) E. E. Carlson and B. F. Cravatt, Nat. Methods, 2007, 4, 429–435;
(c) R. Orth and S. A. Sieber, J. Org. Chem., 2009, 74, 8476–8479;
(d) W. Yuan, J. L. Edwards and S. Li, Chem. Commun., 2013, 49,
11080–11082.
4 (a) K. Guo and L. Li, Anal. Chem., 2010, 82, 8789–8793; (b) W. D. Dai,
Q. Huang, P. Y. Yin, J. Li, J. Zhou, H. W. Kong, C. X. Zhao, X. Lu and
G. W. Xu, Anal. Chem., 2012, 84, 10245–10251.
5 (a) S. S. Liu, H. M. Chen, X. H. Lu, C. H. Deng, X. M. Zhang and
P. Y. Yang, Angew. Chem., Int. Ed., 2010, 49, 7557–7561;
(b) X. L. Zhang, H. Y. Niu, W. H. Li, Y. L. Shi and Y. Q. Cai, Chem.
Commun., 2011, 47, 4454–4456.
6 C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck,
Nature, 1992, 359, 710–712.
7 Y. X. Jia, M. Bois-Choussy and J. P. Zhu, Angew. Chem., Int. Ed., 2008,
47, 4167–4172.
8 (a) Y. Y. Yang, M. Grammel, A. S. Raghavan, G. Charron and H. C. Hang,
Chem. Biol., 2010, 17, 1212–1222; (b) S. H. L. Verhelst, M. Fonovic and
M. Bogyo, Angew. Chem., Int. Ed., 2007, 46, 1284–1286.
9 P. Deng, Y. Zhan, X. Y. Chen and D. F. Zhong, Bioanalysis, 2012, 4, 49–69.
10 K. Guo and L. Li, Anal. Chem., 2009, 81, 3919–3932.
11 H. Li, Y. H. Shan, L. Z. Qiao, A. Dou, X. Z. Shi and G. W. Xu, Anal.
Chem., 2013, 85, 11585–11592.
This study was supported by the National Basic Research
Program (No. 2012CB720801) from the State Ministry of Science
and Technology of China, and the foundations (No. 21275141
12 H. Q. Qin, P. Gao, F. J. Wang, L. Zhao, J. Zhu, A. Q. Wang, T. Zhang,
R. Wu and H. F. Zou, Angew. Chem., Int. Ed., 2011, 50, 12218–12221.
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2015