2056 Journal of Natural Products, 2004, Vol. 67, No. 12
Table 2. 13C NMR Data for Compounds 1-6 (CDCl3)a
Prakash Chaturvedula et al.
6r-({4′-O-[9′′Z-Hexadecenoyl]}-7′E-coumaryloxy)-
eudesm-4(14)-ene (4): colorless liquid; [R]25D -18.6° (c 0.015,
CHCl3); UV (MeOH) λmax (log ꢀ) 205 (4.08), 282 (3.85) nm; IR
carbon
1
2
3
4
5
6
1
νmax 2928, 2853, 1708, 1605, 1515, 1190, 1167, 832 cm-1; H
1
2
3
4
5
6
7
8
9
40.3 40.3
24.2 24.4
42.3 42.3
146.4 146.4
56.0 56.0
71.2 71.5
49.7 49.6
18.4 18.4
38.2 38.1
38.3 38.2
26.2 26.2
17.7 17.7
21.5 21.5
106.9 106.8
16.2 16.2
127.4 132.3
129.8 129.2
114.3 122.1
161.3 152.1
144.3 146.4
116.2 118.8
167.5 167.1
172.1
40.3
24.3
42.3
40.3
24.2
42.2
40.3 40.3
24.3 24.3
42.2 42.2
146.5 146.4
55.9 56.0
71.1 71.6
49.5 49.6
18.4 18.4
38.2 38.2
38.3 38.3
26.2 26.2
17.6 17.6
21.4 21.4
106.7 118.8
16.2 16.2
127.6 132.4
132.4 129.3
115.0 122.1
156.4 152.0
143.3 143.5
114.9 115.9
166.6 167.1
and 13C NMR, see Tables 1 and 2; HRFABMS m/z 605.4570
[M + H]+ (calcd for C40H61O4, 605.4570).
146.4
56.0
146.4
56.0
Alkaline Hydrolysis of 4. Hydrolysis of 4 (1.4 mg) as
reported above furnished 7 and palmitoleic acid ([M+•], m/z
254).
71.5
71.4
49.6
49.7
18.4
18.4
Esterification of 7. Compound 7 (5 mg) in CH2Cl2 (1 mL)
and EDCI (6 mg) were added to a solution of palmitoleic acid
(5 mg) and DMAP (2 mg) in CH2Cl2 (1 mL), and the resulting
mixture was stirred at room temperature for 5 h. EtOAc (10
mL) was added to quench the reaction, and the mixture was
concentrated to yield a pale brown viscous liquid. The brown
viscous liquid on purification by reversed-phase preparative
TLC (MeOH-H2O, 80:20) furnished a colorless liquid (1.2 mg),
which was identified as 4 by co-TLC and 1H NMR spectral
data.
38.2
38.1
10
38.3
38.2
11
26.2
26.2
12
17.7
17.7
13
21.5
21.5
14
106.8
16.2
106.8
16.2
15
1′
132.3
129.2
122.1
152.1
146.4
118.8
167.1
172.1
34.5
127.4
130.0
115.8
157.7
144.5
116.0
167.8
179.4
34.0
2′,6′
3′,5′
4′
6r-(7′Z-Coumaryloxy)eudesm-4(14)-ene (5): colorless
7′
liquid; [R]25 -30.8° (c 0.018, CHCl3); UV (MeOH) λmax (log ꢀ)
D
8′
216 (4.12), 279 (4.42) nm; IR νmax 3390, 2930, 2871, 1648, 1604,
1512, 1442, 1156, 855, 747 cm-1; 1H and 13C NMR, see Tables
1 and 2; HRFABMS m/z 369.2428 [M + H]+ (calcd for C24H33O3,
369.2430).
9′
1′′
2′′
34.5
3′′
25.0
25.0
24.7
4′′-6′′
7′′
29.3-29.8 29.3-29.8 29.2-29.8
29.3-29.8 29.3-29.8 31.9
29.3-29.8 29.3-29.8 27.2
29.3-29.8 29.3-29.8 130.1
29.3-29.8 29.3-29.8 130.1
29.3-29.8 29.3-29.8 27.2
29.3-29.8 29.3-29.8 31.9
6r-({4′-Acetoxy}-7′Z-coumaryloxy)eudesm-4(14)-ene (6):
colorless liquid; [R]25 -56.3° (c 0.019, CHCl3); UV (MeOH)
D
8′′
λmax (log ꢀ) 218 (3.92), 282 (4.14) nm; IR νmax 2930, 2866, 1767,
9′′
1704, 1636, 1506, 1201, 1176, 1009, 912, 833, 756 cm-1 1H
;
10′′
11′′,12′′
13′′
14′′
15′′
16′′
17′′
18′′
OCOCH3
OCOCH3
OCH3
and 13C NMR, see Tables 1 and 2; HRFABMS m/z 411. 2519
[M + H]+ (calcd for C26H35O4, 411.2535).
29.3-29.8 32.0
29.3-29.8 22.8
29.2-29.8
22.7
14.2
Acetylation of 5. Compound 5 (1.2 mg) was dissolved in
pyridine (0.4 mL) and acetic anhydride (0.4 mL), and the
mixture was stirred for 20 h at room temperature. The product
was dried under vacuum, and the residue obtained was
purified by reversed-phase HPLC with the mobile phase
MeOH-H2O (80:20) to furnish 6 (0.7 mg), identified by co-
32.0
22.8
14.2
14.2
169.2
21.2
1
TLC and H NMR spectral data.
55.4
a Assignments made on the basis of COSY, HMQC, and HMBC
spectral data and comparison with the literature values.15,16
Acknowledgment. We gratefully acknowledge financial
support from International Cooperative Biodiversity Grant
U01 TW/CA-00313 from the Fogarty Center, National Insti-
tutes of Health. We are also grateful to Drs. E. Ortega-Barria
and T. Capson of the Panama ICBG for the initial antimalarial
bioassay of M. camphoratum and for training two scientists
from CNARP in their bioassay methodology. We thank Mr.
W. Bebout and Mr. T. Glass (Virginia Polytechnic and State
University, VPISU) for obtaining the mass and NMR spectra,
respectively.
for 16 h. The product was dried under vacuum and the residue
was purified over reversed-phase preparative HPLC with the
mobile phase MeOH-H2O (85:15) to furnish a product (1.2 mg)
that was identified as 1 by co-TLC and its 1H NMR spectrum.
6r-({4′-O-Stearyl}-7′E-coumaryloxy)eudesm-4(14)-
ene (2): colorless liquid; [R]25 -55.4° (c 0.035, CHCl3); UV
D
(MeOH) λmax (log ꢀ) 217.8 (4.21), 280 (4.08) nm; IR νmax 2918,
1
2849, 1764, 1708, 1637, 1506, 1209, 1176, 758 cm-1; H and
13C NMR, see Tables 1 and 2; HRFABMS m/z 635.5034 [M +
Supporting Information Available: 1H and 13C NMR spectra
of compounds 1-6. This material is available free of charge via the
H]+ (calcd for C42H67O4, 635.5039).
Alkaline Hydrolysis of 2. To a solution of compound 2 (2
mg) in MeOH (1 mL) was added 5% methanolic KOH (2 mL),
and the reaction mixture was refluxed for 1 h. The mixture
was concentrated, and water (5 mL) was added. The aqueous
layer was extracted with CH2Cl2 (3 × 10 mL), and the
combined organic layer was concentrated to yield a brown
solid, which on purification by preparative TLC (hexane-
EtOAc, 75:25) furnished a colorless solid (0.5 mg) identified
as 6-epi-â-verbesinol coumarate (7) by spectral (1H NMR and
HRFABMS) data.15 The aqueous layer was acidified with 1 N
HCl and extracted with EtOAc (3 × 10 mL) to yield a brown
viscous liquid, which on preparative TLC (hexane-EtOAc, 50:
50) furnished stearic acid (0.4 mg, [M+•], m/z 284).
References and Notes
(1) Biodiversity Conservation and Drug Discovery in Suriname, Part 15.
For part 14, see: Williams, R. B.; Hoch, J.; Glass, T. E.; Evans, R.;
Miller, J. S.; Wisse, J. H.; Kingston, D. G. I. Planta Med. 2003, 69,
861-864.
(2) Gelb, M. H.; Hol, W. G. J. Science 2002, 297, 343-344.
(3) Schwikkard, S.; van Heerden, F. R. Nat. Prod. Rep. 2002, 19, 675-
692.
(4) Zhou, B.-N.; Baj, N. J.; Glass, T. E.; Malone, S.; Werkhoven, M. C.
M.; van Troon, F.; David, M.; Wisse, J. H.; Kingston, D. G. I. J. Nat.
Prod. 1997, 60, 1287-1293.
(5) Kingston, D. G. I.; Abdel-Kader, M.; Zhou, B.-N.; Yang, S.-W.; Berger,
J. M.; van der Werff, H.; Miller, J. S.; Evans, R.; Mittermeier, R.;
Famolare, L.; Guerin-McManus, M.; Malone, S.; Moniz, E.; Wisse, J.
H.; Vyas, D.; Wright, J. J. K. Pharm. Biol. 1999, S37, 22-34.
(6) Chaturvedula, V. S. P.; Schilling, J. K.; Miller, J. S.; Andriantsiferana,
R.; Rasamison, V. E.; Kingston, D. G. I. J. Nat. Prod. 2004, 67, 895-
898.
6r-({4′-O-Palmityl}-7′E-coumaryloxy)eudesm-4(14)-
ene (3): colorless liquid; [R]25 -15.5° (c 0.065, CHCl3); UV
D
(MeOH) λmax (log ꢀ) 218 (4.32), 273 (3.93) nm; IR νmax 2918,
2849, 1762, 1705, 1637, 1506, 1463, 1210, 1165, 756 cm-1; 1H
and 13C NMR, see Tables 1 and 2; HRFABMS m/z 607.4730
[M + H]+ (calcd for C40H63O4, 607. 4726).
(7) Cao, S.; Schilling, J. K.; Miller, J. S.; Andriantsiferana, R.; Rasamison,
V. E.; Kingston, D. G. I. J. Nat. Prod. 2004, 67, 454-456.
(8) Ginsburg, H.; Ward, S. A.; Bray, P. G. Parasitol. Today 1999, 15,
357-360.
(9) Steele, J. C.; Phelps, R. J.; Simmonds, M. S. J.; Warhurst, D. C.;
Meyer, D. J. J. Antimicrob. Chemother. 2002, 50, 25-31.
Alkaline Hydrolysis of 3. Hydrolysis of 3 (2.5 mg) as
reported above furnished 7 and palmitic acid ([M+•], m/z 256).