4
570 J. Phys. Chem. B, Vol. 113, No. 14, 2009
Br a¨ uer et al.
field (ZFC) and in a magnetic field (FC) of 5 mT is shown in
Figure 11a. The observed magnetization behavior is typical for
particles with a size of just a few nanometers. The ZFC curve
exhibits a maximum at a temperature defined as the blocking
has a strong influence on their magnetic properties, leading to
higher blocking temperatures and coercivity.
This work shows that also planar molecules, similar to the
previously used fullerenes, are suitable for fabricating metal
nanoparticles by codeposition in vacuum and opens ways to
control the electronic and magnetic properties of the nanopar-
ticles by a targeted choice of the molecular structure.
temperature (T ) 17 K) above which all nanoparticles are
B
superparamagnetic. At smaller temperatures, thermal irrevers-
ibility between the ZFC and FC curves appears, indicating a
blocked behavior. The sharpness of the ZFC peak, cf. Figure
1
1a, reflects a highly monodisperse nature of the Ni nanopar-
Acknowledgment. B. Br a¨ uer thanks the Fonds der Chemi-
schen Industrie and the Marie Curie program for two Ph.D.
fellowships and the German Research Foundation (DFG) for a
postdoctoral fellowship. Dr. Steffen Schulze is acknowledged
for the HR-TEM and electron diffraction measurements. This
work was supported by the National Science Foundation (DMR-
0705920) and by the Italian FIRB project RBNE033KMA.
30,25
ticles
embedded in NiPc. In Figure 11b, the ZFC and FC
magnetization curves for the aged NiPc + Ni film are shown.
The magnetic behavior deviates significantly from that of the
freshly prepared sample. The blocking temperature shifts to 50
K in the oxidized samples and the ZFC peak becomes broader.
B
T is proportional to the particle volume and to the effective
8
magnetic anisotropy. As the oxidation process is expected to
yield in most cases a decrease in the particle volume, the shift
of T toward higher temperatures and the broadening of the
B
ZFC peak in the aged film must be caused by a strong increase
of the magnetic anisotropy which can be produced by the
ferromagnetic-antiferromagnetic exchange. Moreover, below
References and Notes
(
(
(
1) Schultz, L.; Schitzke, K.; Wecker, J. Appl. Phys. Lett. 1990, 56, 868.
2) Lu, L.; Sui, M. L.; Lu, K. Science 2000, 287, 1463.
3) Ozaki, M. Mater. Res. Bull. 1989, XIV, 35.
(4) Gleiter, H. Nanostruct. Mater. 1992, 1, 1.
(
(
5) Bader, S. ReV. Mod. Phys. 2006, 78, 1.
6) Sun, C.-J.; Wu, Y.; Xu, Z.; Hu, B.; Bai, J.; Wang, J.-P.; Shen, J.
T
1
B
a difference in the two FC magnetization curves in Figure
1a,b is observed, which indicates a change in the magnetic
properties upon aging in air; while in the fresh sample the
magnetization decreases sharply when approaching T , in the
Appl. Phys. Lett. 2007, 90, 232110.
(7) Stoner, E. C.; Wohlfarth, E. P. Philos. Trans. R. Soc. London, Ser.
A 1948, 240, 599.
(
(
8) Bean, C. P.; Livingston, L. D. J. Appl. Phys. 1959, 30, 120S.
9) Bansmann, J.; Baker, S. H.; Binns, C.; Blackman, J. A.; Bucher,
B
aged sample the FC magnetization decrease is less pronounced.
J.-P.; Dorantes-D a´ vila, J.; Dupuis, V.; Favre, L.; Kechrakos, D.; Kleibert,
A.; Meiwes-Broer, K.-H.; Pastor, G. M.; Perez, A.; Toulemonde, O.;
Trohidou, K. N.; Tuaillon, J.; Xie, Y. Surf. Sci. Rep. 2005, 56, 189.
The latter can be indicative of a spin-glasslike behavior, as often
observed in antiferromagnetic metal oxide nanoparticles.31,32
(
10) Hueso, L. E.; Bergenti, I.; Riminucci, A.; Zhan, Y. Q.; Dediu, V.
From the above discussions we deduce that in both cases the
Ni nanoparticles are chemically and magnetically interacting
with NiO
AdV. Mater. 2008, 19, 2639.
(11) Tsukagoshi, K.; Alphenaar, B. W.; Ago, H. Nature 1999, 401, 572.
(
12) Naber, W. J. M.; Faez, S.; van der Wiel, W. G. J. Phys. D: Appl.
x
but the NiPc + Ni sample that was exposed to air
Phys. 2007, 40, R205.
13) Rocha, A. R.; Garc ´ı a-Su a´ rez, V. M.; Bailey, S. W.; Lambert, C. J.;
for 10 days has both H
C
and T larger than the fresh sample,
B
(
indicating an increase of the magnetic anisotropy. Such changes
can be ascribed to the further oxidation of the metal nanopar-
ticles. However stoichiometric changes, chemical disorder, or
structural changes in the NiO magnetically coupled to the Ni
x
nanoparticles cannot be ruled out.
Ferrer, J.; Sanvito, S. Nat. Mater. 2005, 4, 335.
(14) Xiong, Z. H.; Wu, D.; Vardeny, Z. V.; Shi, J. Nature 2004, 427, 821.
(
15) Bernien, M.; Xu, X.; Miguel, J.; Piantek, M.; Eckhold, Ph.; Luo,
J.; Kurde, J.; Kuch, W.; Baberschke, K.; Wende, H.; Srivastava, P. Phys.
ReV. B 2007, 76, 214406.
(16) Wu, Y.; Hu, B.; Li, A.-P.; Shen, J. Phys. ReV. B 2007, 75, 075413.
(
17) Kusai, H.; Miwa, S.; Mizuguchi, M.; Shinjo, T.; Suzuki, Y.;
Shiraishi, M. Chem. Phys. Lett. 2007, 448, 106.
Summary
(18) (a) Bogani, L.; Wernsdorfer, W. Nat. Mater. 2008, 7, 179. (b)
Br a¨ uer, B.; Weigend, F.; Fittipaldi, M.; Gatteschi, D.; Guerri, A.; Ciattini,
S.; Reijerse, E. J.; Salvan, G.; R u¨ ffer, T. Inorg. Chem. 2008, 47, 6633. (c)
Br a¨ uer, B.; Weigend, F.; Totti, F.; Zahn, D. R. T.; R u¨ ffer, T.; Salvan, G. J.
Phys. Chem. B 2008, 112, 5585. (d) Br a¨ uer, B.; Zahn, D. R. T.; R u¨ ffer, T.;
Salvan, G. Chem. Phys. Lett. 2006, 432, 226.
In summary the codeposition of Ni and various molecules is
shown to yield the formation of Ni nanoparticles with a controlled
size distribution between 2 and 6 nm. Since all investigated
molecules have similar size, the molecular structure of the matrix
hardly effects the size distribution of the Ni nanoparticles but has
a significant influence on their oxidation behavior.
(19) (a) Zheng, L. A.; Lairson, B. M.; Barrera, E. V. Appl. Phys. Lett.
2
000, 70, 3110. (b) Gottfried, J. M.; Flechtner, K.; Kretschmann, A.;
Lukasczyk, T.; Steinr u¨ ck, H.-P. J. Am. Chem. Soc. 2006, 128, 5644.
20) Liu, Z.; Zhang, X.; Zhang, Y.; Jiang, J. Spectrochim. Acta, Part A
(
2
Among the investigated molecules, only H Pc was found to
2
007, 67, 1232.
react with Ni when codeposited, leading to the formation of
NiPc and Ni nanoparticles as shown by Raman spectroscopy
and PES. All other molecules experience a charge transfer from
or to the Ni nanoparticles, favored by the presence of the Ni
oxide shell after exposure to atmosphere.
The formation of Ni oxide upon exposure to atmosphere
occurs in all organic matrices but its amount depends strongly
on the molecule structure and their packing in the organic matrix,
as demonstrated by PES studies. C60 was found to prevent the
nanoparticles from oxygen most effectively due to its most
densely packed structure.
In all systems the Ni nanoparticles were shown to behave
superparamagnetically. The molecular nature of the matrix was
found to influence the magnetic anisotropy of the nanoparticles;
while Ni nanoparticles grown in the buckyball matrix have a
cubic symmetry, the nanoparticles formed in matrices consisting
of planar molecules exhibit a uniaxial symmetry. The oxidation
(21) Holzl, J.; Schulze, F. K. Solid Surface Physics. In Tracts in Modern
Physics; Springer: New York, 1979; Vol. 85, p 92.
(22) Petraki, F.; Papaefthimiou, V.; Kennou, S. Org. Electron. 2007, 8, 522.
(23) Cherkashinin, G.; Krischok, S.; Himmerlich, M.; Ambacher, O.;
Schaefer, J. A. J. Phys.: Condens. Matter 2006, 18, 43, 9841.
24) Petraki, F.; Papaefthimiou, V.; Kennou, S. Org. Electron. 2007, 8,
, 522.
(
5
(
25) de Juli a´ n Fern a´ ndez, C. Phys. ReV. B 2005, 72, 054438.
(26) Walker, M. P.; Mayo, P. I.; O’Grady, K.; Charles, S. W.; Chantrell,
R. W. J. Phys.: Condens. Matter 1993, 5, 2779.
(27) Meiklejohn, W. H.; Bean, C. P. Phys. ReV. 1956, 102, 1413.
(28) Nogu e´ s, J.; Sort, J.; Langlais, V.; Skumryev, V.; Suri n˜ ach, S.;
Mu n˜ oz, J. S.; Bar o´ , M. D. Phys. Rep. 2005, 422, 65.
(29) Spasova, M.; Wiedwald, U.; Farle, M.; Radetic, T.; Dahmen, U.;
Hilgendorff, M.; Giersig, M. J. Magn. Magn. Mater. 2004, 272-276, 1508.
(
30) Sappey, R.; Vincent, E.; Hadacek, N.; Chaput, F.; Boilot, J. P.;
Zins, D. Phys. ReV. B 1997, 56, 14551.
(31) Binder, K.; Young, A. P. ReV. Mod. Phys. 1986, 58, 801.
(
32) Makhlouf, S. A.; Parker, F. T.; Spada, F. E.; Berkowitz, A. E.
J. Appl. Phys. 1997, 81, 5561.
JP809777Z