Please do not adjust margins
ChemComm
Page 3 of 3
DOI: 10.1039/C6CC09486D
Journal Name
COMMUNICATION
molecule. The corresponding device performance is summarized in and doped devices reach 3.68% and 4.42%, respectively, which
2
Table 1. As shown in the Table 1, the voltages tested at 0.2 mA/cm
illustrates that the BFPz unit is a promising electronꢀ
of devices decreased when the doping concentration of TPAꢀBFPz in withdrawing moiety. It is foreseen that the electronꢀ
DPEPO increased, which indicated TPAꢀBFPz might have good
electron and hole transporting abilities. When the doping
concentration of TPAꢀBFPz is 30%, the DꢀA based OLED exhibits
maximum efficiencies of 11.5 cd/A, 10.3 lm/W and 4.42%. The
superior device performance implies that TPAꢀBFPz is a favorable
DꢀA molecule and a promising blue fluorescent material in OLED.
withdrawing unit can be used for designing novel TADF or
HLCT materials in the future.
We thank the financial support from the Natural Science
Foundation of China (Nos. 61575136 and 61475106) and the
Natural
Science
Foundation
of
Jiangsu
Province
(
BK20151264). This project is also financially supported by the
Collaborative Innovation Center (CIC) of Suzhou Nano Science
and Technology and the Priority Academic Program
Development of the Jiangsu Higher Education Institutions
Table 1. Summary of electroluminescence data for OLEDs.
a
b
c
c
c
d
Devices
Voltage
CEmax
PEmax
EQEmax
CIE
(
PAPD).
(V)
cd/A
lm/W
%
1
2
2
3
5
5%
0%
5%
0%
0%
3.7
3.6
3.5
3.5
3.4
3.4
11
11
11
9.2
9.4
9.7
10.3
8.9
7.4
4.4
0.19, 0.42
0.19, 0.43
0.19, 0.44
0.19, 0.44
0.18, 0.42
0.16, 0.35
4.3
Notes and references
4.27
4.42
3.85
1
(a) C. W. Tang, S. A. VanSlyke, Appl. Phys. Lett. 1987, 51, 913; (b) C.
Adachi, T. Tsutsui, S. Saito, Appl. Phys. Lett. 1989, 55, 1489; (c) J. Shi, C. W.
Tang, Appl. Phys. Lett. 2002, 80, 3201.
11.5
9.5
8
2
3
M. A. Baldo, M. E. Thompson, S. R. Forrest, Nature 2000, 403, 750.
(a) W. Li, Y. Pan, R. Xiao, Q. Peng, S. Zhang, D. Ma, F. Li, F. Shen, Y.
Wang, B. Yang, Y. Ma, Adv. Funct. Mater. 2014, 24, 1609; (b) S. Zhang, L.
Yao, Q. Peng, W. Li, Y. Pan, R. Xiao, Y. Ma, Adv. Funct. Mater. 2015, 25,
Non-doped
3.68
2
a) Doping concentration of TPA-BFPz in DPEPO; b) Driving voltage (at 0.2 mA/cm ); c)
1
755; (c) D. Yu, F. Zhao, Z. Zhang, C. Han, H. Xu, J. Li, D. Ma, P. Yan,
CEmax, PEmax, EQEmax = max current efficiency, power efficiency and external quantum
Chem. Commun., 2012, 48, 6157.
2
4
(a) Q. Zhang, J. Li, K. Shizu, S. Huang, S. Hirata, H. Miyazaki, C. Adachi, J.
Am. Chem. Soc. 2012, 134, 14706; (b) S. Wu, M. Aonuma, Q. Zhang, S.
Huang, T. Nakagawa, K. Kuwabara, C. Adachi, J. Mater. Chem. C, 2014, 2,
efficiency; d) Measured at 5 mA/cm .
4
21.
5
6
(a) Ye, Z. Chen, M. K. Fung, C. Zheng, X. Ou, X. Zhang, Y. Yuan, C. S. Lee,
Chem. Mater. 2013, 25, 2630.
(a) L. Chen, Y. B. Jiang, H. Nie, R. R. Hu, H. S. Kwok, F. Huang, A. J. Qin,
Z. J. Zhao, B. Z. Tang, ACS Appl. Mater. Interfaces 2014, 6, 17215; (b) G. W.
Lin, H. R. Peng, L. Chen, H. Nie, W. W. Luo, Y. H. Li, S. M. Chen, R. R. Hu,
A. J. Qin, Z. J. Zhao, B. Z. Tang, ACS Appl. Mater. Interfaces 2016,8,16799;
(c) X. J. Zhan, Z. B Wu, Y. X. Lin, Y. J. Xie, Q. Peng, Q. Q Li, D. G. Ma, Z.
Li, Chem. Sci., 2016, 7, 4355.
7
S. Dong, C. Gao, Z. Zhang, Z. Jiang, S. Lee and L. Liao, Phys. Chem. Chem.
Phys., 2012, 14, 14224
8
9
L. Deng, J. Li, G. Wang and L. Wu, J. Mater. Chem. C, 2013, 1, 8140.
C. Han, G. Xie, H. Xu, Z. Zhang, L. Xie, Y. Zhao, S. Liu and W. Huang, Adv.
Mater., 2011, 23, 2491.
1
1
1
0
1
2
C. H. Chen, W. S. Huang , M. Y. Lai, W. C. Tsao, J. T. Lin, Y. H. Wu, T. H.
Ke, L. Y. Chen, C. C. Wu, Angew. Chem. Int. Ed. 2008, 47, 581.
S. Y. Lee, T. Yasuda, H.Nomura, C. Adachi, Appl. Phys. Lett, 2012, 101,
0
93306.
(a) K. Suzuki, S. Kubo, K. Shizu, T. Fukushima, A. Wakamiya, Y. Murata, C.
Adachi, H. Kaji, Angew. Chem. Int. Ed. 2015, 127, 15446; (b) Y. J.Shiu, Y. C.
Cheng, W. L. Tsai, C. C. Wu, C. T. Chao, C. W. Lu, Y. Chi, Y. T. Chen, S.
Liu, P. T. Chou, Angew. Chem. Int. Ed. 2016, 55, 3017.
1
3
Y. Liu , L. S. Cui , M. F. Xu , X. B. Shi , D. Y. Zhou , Z. K. Wang , Z. Q.
Jiang , L. S. Liao, J. Mater. Chem. C, 2014, 2, 2488.
1
4 (a) Y. T. Tao, Q. Wang, Y. Shang, C. L. Yang, L. Ao, J. G. Qin,
D. G. Ma, Z. G. Shuai, Chem. Commun., 2009, 77; (b) Z. Ge, T. Hayakawa, S.
Ando, M. Ueda, T. Akiike, H. Miyamoto, T. Kajita and M. Kakimoto, Adv.
Funct. Mater., 2008, 18, 584
1
5 (a) W. Y. Hung, L. C. Chi, W. J. Chen, Y. M. Chen, S. H. Chou, K. T. Wong,
J. Mater. Chem., 2010, 20, 10113; (b) D. Fan, Y. P. Yi, Z. D. Li, W. J. Liu,
Q. Peng, Z. G. Shuai, J. Phys. Chem. A ,2015, 119, 5233.
Fig. 2. a) J-V-L curves of devices; b) CE-L and EQE-L curves of devices
In summary, an innovative electronꢀwithdrawing moiety, 2ꢀ
BrꢀBFPz, which possesses a highly confined conjugated
structure, has been designed and synthesized. We have
combined 2ꢀBrꢀBFPz with the TPA group which is a classical
electronꢀdonating unit to form a novel fluorescent material with
a DꢀA structure named TPAꢀBFPz. Interestingly, the TPAꢀ
BFPz exhibits strong fluorescence and has been utilized as a
blue fluorescent emitter for OLEDs. The EQEs for nonꢀdoped
This journal is © The Royal Society of Chemistry 2015
J. Name., 2015, 00, 1-3 | 3
Please do not adjust margins