10.1002/anie.201902576
Angewandte Chemie International Edition
Q.-A. Chen, Z.-S. Ye, Y. Duan, Y.-G. Zhou, Chem. Soc. Rev. 2013,
42, 497. l) P. Etayo, A. Vidal-Ferran, Chem. Soc. Rev. 2013, 42, 728.
m) K. H. Hopmann, A. Bayer, Coord. Chem. Rev. 2014, 268, 59. n)
Z. Zhang, N. A. Butt, W. Zhang, Chem. Rev. 2016, 116, 14769. o) P.-
G. Echeverria, T. Ayad, P. Phansavath, V. Ratovelomanana-Vidal,
Synthesis 2016, 48, 2523. p) C. S. G. Seo, R. H. Morris,
Organometallics 2019, 38, 47.
affected by the second hydrogenation step, which is also preferable
for the R-catalytic cycle by 4.5 kcal/mol (Scheme 6, note that the S-
cycle also requires an additional isomerization step). Furthermore,
the extensive network of numerous weak attractive interactions
between the catalyst and substrate in TS(R) may also contribute to
the high catalytic activity.
[3] For reviews: a) R. H. Morris, Chem. Soc. Rev. 2009, 38, 2282. b) K.
Gopalaiah, Chem. Rev. 2013, 113, 3248. c) H. Pellissier, H. Clavier,
Chem. Rev. 2014, 114, 2775. d) R. H. Morris, Acc. Chem. Res. 2015,
48, 1494. e) Y.-Y. Li, S.-L. Yu, W.-Y. Shen, J.-X. Gao, Acc. Chem.
Res. 2015, 48, 2587. f) P. J. Chirik, Acc. Chem. Res. 2015, 48, 1687.
g) I. Bauer, H.-J. Knölker, Chem. Rev. 2015, 115, 3170. h) R. Bigler,
A. Mezzetti, Org. Process Res. Dev. 2016, 20, 253. i) Z. Zhang, N. A.
Butt, M. Zhou, D. Liu, W. Zhang, Chin. J. Chem. 2018, 36, 443.
[4] a) P. O. Lagaditis, P. E. Sues, J. F. Sonnenberg, K. Y. Wan, A. J.
Lough, R. H. Morris, J. Am. Chem. Soc. 2014, 136, 1367. b) M. R.
Friedfeld, H. Zhong, R. T. Ruck, M. Shevlin, P. J. Chirik, Science
2018, 360, 888. c) L. Zhang, Y. Tang, Z. Han, K. Ding, Angew.
Chem., Int. Ed. 2019, 58, doi: 10.1002/anie.201814751.
In conclusion, a Ni-catalyzed asymmetric hydrogenation of N-
tBu-sulfonyl imines was developed to afford chiral tBu-sulfonyl
amines with excellent catalytic activities and enantioselectivities
based on the founding of a coordination equilibrium between the Ni
salt and its complex. A much lower catalyst loading (0.0095 mol %,
S/C = 10500) for a cyclic substrate 1af represents the highest
catalytic activity for all the Ni-catalyzed asymmetric hydrogenations
reported to date. Computations suggested that the enantioselectivity
originates from the significant structural differences between the S-
and R-pathways. Furthermore, the computations also suggested that
the very high catalytic activities of the hydrogenation may be partly
due to the numerous weak attractive interactions between the
substrate and catalyst in the transition state.
[5] (a) Y. Hamada, Y. Koseki, T. Fujii, T. Maeda, T. Hibino, K. Makino,
Chem. Commun. 2008, 46, 6206. (b) T. Hibino, K. Makino, T.
Sugiyama, Y. Hamada, ChemCatChem 2009, 1, 237.
[6] M. Shevlin, M. R. Friedfeld, H. Sheng, N. A. Pierson, J. M. Hoyt,
L.-C. Campeau, P. J. Chirik, J. Am. Chem. Soc. 2016, 138, 3562.
[7] a) W. Gao, H. Lv, T. Zhang, Y. Yang, L. W. Chung, Y.-D. Wu, X.
Zhang, Chem. Sci. 2017, 8, 6419. b) X. Li, C. You, S. Li, H. Lv, X.
Zhang, Org. Lett. 2017, 19, 5130. c) J. Long, W. Gao, Y. Guan, H.
Lv, X. Zhang, Org. Lett. 2018, 20, 5914. d) Y.-Q. Guan, Z. Han, X.
Li, C. You, X. Tan, H. Lv, X. Zhang, Chem. Sci. 2019, 10, 252.
[8] a) H. Xu, P. Yang, P. Chuanprasit, H. Hirao, J. Zhou, Angew. Chem.,
Int. Ed. 2015, 54, 5112; Angew. Chem. 2015, 127, 5201. b) P. Yang,
L. H. Lim, P. Chuanprasit, H. Hirao, J. Zhou, Angew. Chem., Int. Ed.
2016, 55, 12083; Angew. Chem. 2016, 128, 12262. c) X. Zhao, H.
Xu, X. Huang, J. S. Zhou, Angew. Chem. Int. Ed. 2019, 58, 292;
Angew. Chem. 2019, 131, 298.
Acknowledgments
We would like to thank Shanghai Municipal Education
Commission (No. 201701070002E00030), National Natural Science
Foundation of China (Nos. 21620102003, 21702134 and 21772119)
and Science and Technology Commission of Shanghai Municipality
(No. 17ZR1415200) for financial support. We thank the
Instrumental Analysis Center of SJTU for characterization.
[9] For representative papers: a) F. Tian, D. Yao, Y. Liu, F. Xie, W.
Zhang, Adv. Synth. Catal. 2010, 352, 1841. b) Y. Liu, W. Zhang,
Angew. Chem. Int. Ed. 2013, 52, 2203; Angew. Chem. 2013, 125,
2259. c) J. Chen, D. Liu, N. Butt, C. Li, D. Fan, Y. Liu, W. Zhang,
Angew. Chem. Int. Ed. 2013, 52, 11632; Angew. Chem. 2013, 125,
11846. d) Y. Liu, I. D. Gridnev, W. Zhang, Angew. Chem. Int. Ed.
2014, 53, 1901; Angew. Chem. 2014, 126, 1932. e) Q. Hu, Z. Zhang,
Y. Liu, T. Imamoto, and W. Zhang, Angew. Chem. Int. Ed. 2015, 54,
2260; Angew. Chem. 2015, 127, 2288. f) J. Chen, Z. Zhang, D. Liu,
W. Zhang, Angew. Chem. Int. Ed. 2016, 55, 8444; Angew. Chem.
2016, 128, 8584. g) J. Chen, Z. Zhang, B. Li, F. Li, Y. Wang, M.
Zhao, I. D. Gridnev, T. Imamoto, W. Zhang, Nat. Commun. 2018, 9,
5000.
Keywords: nickel-catalyst asymmetric hydrogenation chiral amines
(R,R)-QuinoxP*
[1] Chiral Amine Synthesis: Methods, Developments and Applications
(Ed.: T. C. Nugent), Wiley-VCH, Weinheim, 2010.
[2] For representative reviews: a) H.-U. Blaser, C. Malan, B. Pugin, F.
Spindler, H. Steiner, M. Studer, Adv. Synth. Catal. 2003, 345, 103. b)
W. Tang, X. Zhang, Chem. Rev. 2003, 103, 3029. c) W. Zhang, Y.
Chi, X. Zhang, Acc. Chem. Res. 2007, 40, 1278. d) N. B. Johnson, I.
C. Lennon, P. H. Moran, J. A. Ramsden, Acc. Chem. Res. 2007, 40,
1291. e) N. Fleury-Brꢀgeot, V. de la Fuente, S. Castillꢁn, C. Claver,
ChemCatChem 2010, 2, 1346. f) C. Wang, B. Villa-Marcos, J. Xiao,
Chem. Commun. 2011, 47, 9773. g) J.-H. Xie, S.-F. Zhu, Q.-L. Zhou,
Chem. Rev. 2011, 111, 1713. h) D. J. Ager, A. H. M. de Vries, J. G.
de Vries, Chem. Soc. Rev. 2012, 41, 3340. i) Z. Yu, W. Jin, Q. Jiang,
Angew. Chem. Int. Ed. 2012, 51, 6060. Angew. Chem. 2012, 124,
6164. j) J.-H. Xie, Q.-L. Zhou, Acta Chim. Sinica 2012, 70, 1427. k)
[10] Y. -C. Chen, T.-F. Wu, J.-G. Deng, H. Liu, X. Cui, J. Zhu, Y.-Z. Jiang,
M. C. K. Choi, A. S. C. Chan, J. Org, Chem. 2002, 67, 5301.
[11] D. Enders, M. Seppelt, T. Beck, Adv. Synth. Catal. 2010, 352, 1413.
5
This article is protected by copyright. All rights reserved.