ChemComm
Communication
drop in wMT to 1.6 cm3 molꢁ1 K. This value remains constant
until 130 K where there is a further rapid decrease in wMT to
0.05 cm3 molꢁ1 K representing a complete spin state conversion
of iron(II) sites to LS. The heating curve shows the same two-step SCO
behaviour with hysteresis loops of 19 K (T1/2k: 123 K T1/2m: 142 K)
and 16 K (T1/2k: 228 K T1/2m: 244 K). The IP corresponds to a 50 : 50
ratio of HS and LS iron(II) sites distributed in the crystalline lattice.
To gain an overall perspective of the structural changes accom-
panying the two-step switching in variable temperature synchrotron-
based powder X-ray diffraction was used and most notably revealed a
single-phase behaviour over the entire SCO temperature range
(Fig. 2(b)). The powder diffraction data additionally revealed pro-
nounced, abrupt shifts in Bragg reflections that mirror the magnetic
data (Fig. S11, ESI†). Most importantly, parallel single crystal data
collected at the IP (180 K) and LS state (100 K) confirm the iron(II) spin
state progression (HS–HS to HS–LS to LS–LS, respectively, for Fe1–Fe2)
and reveal definitively the underlying fundamental reason for the
prolonged thermal existence of the IP region. Surprisingly, with
cooling from 260 to 180 K, concomitant with the HS to LS transition
at Fe2, the octahedral distortion of Fe1 increases dramatically (11.3 -
21.21, Fig. 2(a) inset). Additionally, the sequence of octahedral distor-
tion of Fe2 with heating from 100 to 180 K (4.4 - 1.21) indicates that
the LS to HS transition at Fe1 stabilises the LS state at Fe2. In
particular, with each respective HS 2 LS transition at either Fe1 or
Fe2, as the Fe–N bond lengths and overall octahedral volume vary this
causes a mechano-elastic stress resulting in stabilization through
distortive forces and thus significantly enhancing the temperature
stability range of the IP region. We attribute these findings to a
negative cooperative impact imparted by the hydrogen-bonding net-
work interconnecting the ligands associated with Fe1 and Fe2 which
inhibits the entire lattice converting from HS to LS in one-step.
Negative cooperativity has been noted previously, for example in
dinuclear materials in which the lower temperature HS to LS transi-
tion is completely inhibited, resulting in a half one-step SCO.34,35
In summary, we have shown that the combination of 2-D
Hofmann-type materials and aromatic ligands with inherent bind-
ing asymmetry can promote the formation of structurally and
magnetically distinct SCO sites towards predictably attaining
multi-step SCO behaviours. Furthermore, we highlight that inter-
connecting spin switching sites can facilitate negative cooperativity
and stabilize IP regions, where here a remarkable 120 K IP has been
achieved by this method. We are currently looking into the host–
guest properties within these flexible 2-D porous materials which
promise adaptable and versatile structure-function response.
This work was supported by a Fellowships and Discovery Project
funding from the Australian Research Council. Use of the Advanced
Photon Source was supported by the U.S. Department of Energy,
Office of Science, Office of Basic Energy Sciences, under Contract
No. DE-AC02-06CH11357; we thank Dr Gregory J. Halder. We thank
the International Synchrotron Access Program (ISAP) for funding.
Use of the Australian Synchrotron was undertaken at MX-1.
´
3 J.-F. Letard, P. Guionneau and L. Goux-Capes, Top. Curr. Chem.,
2004, 234, 221–250.
4 M. A. Halcrow, Spin-crossover materials: properties and applications,
John Wiley & Sons, Ltd., 2013.
5 P. Gu¨tlich, A. B. Gaspar and Y. Garcia, Beilstein J. Org. Chem., 2013, 9,
342–391.
6 P. Guionneau, M. Marchivie, G. Bravic, J.-F. Letard and D. C.
Chasseau, Top. Curr. Chem., 2004, 234, 97–128.
7 G. Molnar, S. Cobo, J. A. Real, F. Carcenac, E. Daran, C. Vieu and
A. Bousseksou, Adv. Mater., 2007, 19, 2163–2167.
8 I. Boldog, A. B. Gaspar, V. Martınez, P. Pardo-Ibanez, V. Ksenofontov,
A. Bhattacharjee, P. Gu¨tlich and J. A. Real, Angew. Chem., Int. Ed., 2008,
47, 6433–6437.
9 T. Forestier, S. Mornet, N. Daro, T. Nishihara, S.-I. Mouri, K. Tanaka,
O. Fouche, E. Freysz and J.-F. Letard, Chem. Commun., 2008, 4327.
10 F. Volatron, L. Catala, E. Riviere, A. Gloter, O. Stephan and
T. Mallah, Inorg. Chem., 2008, 47, 6584–6586.
11 O. Kahn, Molecular Magnetism, VCH, New York, 1993.
12 S. Bonnet, M. A. Siegler, J. S. Costa, G. Molnar, A. Bousseksou, A. L. Spek,
P. Gamez and J. Reedijk, Chem. Commun., 2008, 5619–5621.
13 M. Nihei, H. Tahira, N. Takahashi, Y. Otake, Y. Yamamura, K. Sato
and H. Oshio, J. Am. Chem. Soc., 2010, 132, 3553–3560.
14 We define here the IP thermal region as the difference between
´
´
´
˜
´
´
`
´
T
1/2k(cool) and T1/2m(heat). W. Bauer, T. Pfaffeneder, K. Achterhold
and B. Weber, Eur. J. Inorg. Chem., 2011, 3183–3192.
15 M. Griffin, S. Shakespeare, H. J. Shepherd, C. J. Harding, J.-F. Letard,
C. Desplanches, A. E. Goeta, J. A. K. Howard, A. K. Powell, V. Mereacre,
Y. Garcia, A. D. Naik, H. Mu¨ller-Bunz and G. G. Morgan, Angew. Chem.,
Int. Ed., 2011, 50, 896–900.
´
16 N. F. Sciortino, K. R. Scherl-Gruenwald, G. Chastanet, G. J. Halder,
´
K. W. Chapman, J.-F. Letard and C. J. Kepert, Angew. Chem., Int. Ed.,
2012, 51, 10154–10158.
17 R. Ohtani, A. Masashi, A. Hori, M. Takata, S. Kitao, M. Seto, S. Kitagawa
and M. Ohba, J. Inorg. Organomet. Polym., 2013, 23, 104–110.
18 B. J. Vieira, J. T. Coutinho, I. C. Santos, L. C. Pereira, J. C. Waerenborgh
and V. da Gama, Inorg. Chem., 2013, 52, 3845–3850.
19 V. Martinez, Z. A. Castillo, M. C. Munoz, A. B. Gaspar, C. Etrillard,
´
J.-F. Letard, S. A. Terekhov, G. V. Bukin, G. Levchenko and J. A. Real,
Eur. J. Inorg. Chem., 2013, 813–818.
20 Z.-Y. Li, J.-W. Dai, Y. Shiota, K. Yoshizawa, S. Kanegawa and O. Sato,
Chem.–Eur. J., 2013, 19, 12948–12952.
21 J. Klingele, D. Kaase, M. Schmuker, Y. Lan, G. Chastanet and J.-F.
Letard, Inorg. Chem., 2013, 52, 6000–6010.
22 J. J. Amoore, C. J. Kepert, J. D. Cashion, B. Moubaraki, S. M. Neville
and K. S. Murray, Chem.–Eur. J., 2006, 12, 8220–8227.
23 M. Griffin, S. Shakespear, H. J. Shepherd, C. J. Harding, J.-F. Letard,
´
´
C. Desplanches, A. E. Goeta, J. A. Howard, A. K. Powell, V. Mereacre,
Y. Garcia, A. D. Naik, H. Bunz-Muller and G. G. Morgan, Angew.
Chem., Int. Ed., 2011, 50, 896–900.
24 T. Kitazawa, Y. Gomi, M. Takahashi, M. Takeda, M. Enomoto and
A. Miyazaki, J. Mater. Chem., 1996, 6, 119–121.
25 V. Niel, J. M. Martinez-Agudo, M. C. Munoz, A. B. Gaspar and
J. A. Real, Inorg. Chem., 2001, 40, 3838–3839.
26 A. B. G. M. Seredyuk, V. Ksenofontov, M. Verdaguer, F. Villain and
P. Gutlich, Inorg. Chem., 2009, 48, 6130–6141.
´
˜
27 V. Martınez, A. B. Gaspar, M. C. Munoz, G. V. Bukin, G. Levchenko
and J. A. Real, Chem.–Eur. J., 2009, 15, 10960–10971.
28 P. D. Southon, L. Liu, E. A. Fellows, D. J. Price, G. J. Halder,
´
K. W. Chapman, B. Moubaraki, K. S. Murray, J.-F. Letard and
C. J. Kepert, J. Am. Chem. Soc., 2009, 131, 10998–11009.
29 G. Agusti, A. B. Gaspar, M. C. Mnnoz, P. G. Lacroix and J. A. Real,
Aust. J. Chem., 2009, 62, 1155–1165.
30 R. Ohtani, K. Yoneda, S. Furukawa, N. Horike, S. Kitagawa,
A. B. Gaspar, M. C. Munoz, J. A. Real and M. Ohba, J. Am. Chem.
Soc., 2011, 133, 8600–8605.
31 X. Bao, H. J. Shepherd, L. Salmon, G. Molnar, M.-L. Tong and
A. Bousseksou, Angew. Chem., Int. Ed., 2013, 52, 1198–1202.
32 R. Otahani, M. Arai, H. Ohba, A. Hori, M. Takata, S. Kitagawa and
M. Ohba, Eur. J. Inorg. Chem., 2013, 738–744.
˜
˜
˜
˜
33 F. J. Munoz-Lara, A. B. Gaspar, M. C. Munoz, A. B. Lysenko,
K. V. Domasevitch and J. A. Real, Inorg. Chem., 2012, 51, 13078–13080.
34 S. G. Telfer, B. Bocquet and A. F. Williams, Inorg. Chem., 2001, 40, 4818–4820.
35 C. M. Grunert, S. Reiman, H. Spiering, J. A. Kitchen, S. Brooker and
P. Gu¨tlich, Angew. Chem., Int. Ed., 2008, 47, 2997–2999.
Notes and references
1 O. Kahn and C. J. Martinez, Science, 1998, 279, 44–48.
2 P. Gu¨tlich and H. A. Goodwin, Top. Curr. Chem., 2004, 233, 1–47.
3840 | Chem. Commun., 2014, 50, 3838--3840
This journal is ©The Royal Society of Chemistry 2014