Page 9 of 26
Journal of the American Chemical Society
2
014, 50, 2161-2163. (t) Bai, S.; Liao, Y.; Lin, L.; Luo, W.; Liu, X.;
T.; Lesage, A.; Emsley, L.; Collet, A., J. Am. Chem. Soc. 2000, 122,
1171-1174. (h) Banci, L.; Bertini, I.; Briganti, F.; Luchinat, C.;
Scozzafava, A.; Oliver, M. V., Inorg. Chem. 1991, 30, 4517-4524. (i)
Dunand, F. A.; Aime, S.; Merbach, A. E., J. Am. Chem. Soc. 2000,
122, 1506-1512. (j) Aime, S.; Botta, M.; Ermondi, G., Inorg. Chem.
1992, 31, 4291-4299. (k) Willem, R., Prog. Nucl. Magn. Reson.
Spectrosc. 1988, 20, 1-94. (l) Heise, J. D.; Raftery, D.; Breedlove, B.
K.; Washington, J.; Kubiak, C. P., Organometallics 1998, 17, 4461-
4468.
9. (a) Arvidsson, P. I.; Ahlberg, P.; Hilmersson, G., Chem. Eur. J.
1999, 5, 1348-1354. (b) Hilmersson, G.; Malmros, B., Chem. Eur. J.
2001, 7, 337-341. (c) Li, D. Y.; Sun, C. Z.; Williard, P. G., J. Am.
Chem. Soc. 2008, 130, 11726-11736. (d) Pöppler, A.-C.; Meinholz,
M. M.; Faßhuber, H.; Lange, A.; John, M.; Stalke, D.,
Organometallics 2011, 31, 42-45. (e) Bauer, W.; Feigel, M.; Mueller,
G.; Schleyer, P. v. R., J. Am. Chem. Soc. 1988, 110, 6033-6046.
10. (a) Bottke, P.; Freude, D.; Wilkening, M., J. Phys. Chem. C 2013,
117, 8114-8119. (b) Davis, L. J. M.; Heinmaa, I.; Goward, G. R.,
Chem. Mater. 2009, 22, 769-775. (c) Cahill, L. S.; Chapman, R. P.;
Britten, J. F.; Goward, G. R., J. Phys. Chem. B 2006, 110, 7171-7177.
(d) Verhoeven, V. W. J.; de Schepper, I. M.; Nachtegaal, G.;
Kentgens, A. P. M.; Kelder, E. M.; Schoonman, J.; Mulder, F. M.,
Phys. Rev. Lett. 2001, 86, 4314-4317. (e) Nagel, R.; Groß, T. W.;
Günther, H.; Lutz, H. D., J. Solid State Chem. 2002, 165, 303-311.
11. (a) Cockerill, A. F.; Davies, G. L. O.; Harden, R. C.; Rackham, D.
M., Chem. Rev. 1973, 73, 553-588. (b) Peters, J. A.; Huskens, J.;
Raber, D. J., Prog. Nucl. Magn. Reson. Spectrosc. 1996, 28, 283-350.
12. Cobas, J. C.; Martin-Pastor, M. EXSYCalc, 1.0; Mestrelab
Research: Santiago De Compostela.
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
Feng, X., J. Org. Chem. 2014, 79, 10662-10668. (u) Zhou, L.; Liu,
X.; Ji, J.; Zhang, Y.; Wu, W.; Liu, Y.; Lin, L.; Feng, X., Org. Lett.
2
014, 16, 3938-3941. (v) Chu, Y.; Hao, X.; Lin, L.; Chen, W.; Li, W.;
Tan, F.; Liu, X.; Feng, X., Adv. Synth. Catal. 2014, 356, 2214-2218.
w) Hao, X.; Liu, X.; Li, W.; Tan, F.; Chu, Y.; Zhao, X.; Lin, L.;
(
Feng, X., Org. Lett. 2014, 16, 134-137. (x) Robinson, J. R.; Fan, X.;
Yadav, J.; Carroll, P. J.; Wooten, A. J.; Pericàs, M. A.; Schelter, E. J.;
Walsh, P. J., J. Am. Chem. Soc. 2014, 136, 8034-8041. (y) Robinson,
J. R.; Yadav, J.; Fan, X.; Stanton, G. R.; Schelter, E. J.; Pericàs, M.
A.; Walsh, P. J., Adv. Synth. Catal. 2014, 356, 1243-1254.
2
. (a) Sasai, H.; Suzuki, T.; Itoh, N.; Tanaka, K.; Date, T.; Okamura,
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
K.; Shibasaki, M., J. Am. Chem. Soc. 1993, 115, 10372-10373. (b)
Sasai, H.; Arai, T.; Satow, Y.; Houk, K. N.; Shibasaki, M., J. Am.
Chem. Soc. 1995, 117, 6194-6198. (c) Shibasaki, M.; Yoshikawa, N.,
Chem. Rev. 2002, 102, 2187-2209. (d) Shibasaki, M.; Sasai, H.; Arai,
T., Angew. Chem. Int. Ed. 1997, 36, 1237-1256. (e) Walsh, P. J.;
Kozlowski, M. C., Fundamentals of Asymmetric Catalysis. University
Science Books: Sausalito, CA, 2008; p 674.
3. (a) Sone, T.; Yamaguchi, A.; Matsunaga, S.; Shibasaki, M., J. Am.
Chem. Soc. 2008, 130, 10078-10079. (b) Yamagiwa, N.; Qin, H. B.;
Matsunaga, S.; Shibasaki, M., J. Am. Chem. Soc. 2005, 127, 13419-
1
3427. (c) Yamagiwa, N.; Tian, J.; Matsunaga, S.; Shibasaki, M., J.
Am. Chem. Soc. 2005, 127, 3413-3422. (d) Schlemminger, I.; Saida,
Y.; Groger, H.; Maison, W.; Durot, N.; Sasai, H.; Shibasaki, M.;
Martens, J., J. Org. Chem. 2000, 65, 4818-4825. (e) Yoshikawa, N.;
Yamada, Y. M. A.; Das, J.; Sasai, H.; Shibasaki, M., J. Am. Chem.
Soc. 1999, 121, 4168-4178. (f) Emori, E.; Arai, T.; Sasai, H.;
Shibasaki, M., J. Am. Chem. Soc. 1998, 120, 4043-4044. (g) Groger,
H.; Saida, Y.; Sasai, H.; Yamaguchi, K.; Martens, J.; Shibasaki, M., J.
Am. Chem. Soc. 1998, 120, 3089-3103. (h) Sasai, H.; Arai, S.; Tahara,
Y.; Shibasaki, M., J. Org. Chem. 1995, 60, 6656-6657. (i) Arai, T.;
Yamada, Y. M. A.; Yamamoto, N.; Sasai, H.; Shibasaki, M., Chem.
Eur. J. 1996, 2, 1368-1372.
13. (a) Jordan, R. B., Reaction Mechanisms of Inorganic and
Organometallic Systems. 2nd ed.; Oxford University Press: New
York, NY, 1998. (b) Asperger, S., Chemical Kinetics and Inorganic
Reaction Mechanisms. 2nd ed.; Kluwer Academic: New York, NY,
2003.
4
2
. (a) Wooten, A. J.; Carroll, P. J.; Walsh, P. J., J. Am. Chem. Soc.
008, 130, 7407-7419. (b) Wooten, A. J.; Salvi, L.; Carroll, P. J.;
14. Morita, T.; Arai, T.; Sasai, H.; Shibasaki, M., Tetrahedron:
Asymmetry 1998, 9, 1445-1450.
15. Robinson, J. R.; Booth, C. H.; Carroll, P. J.; Walsh, P. J.; Schelter,
E. J., Chem. Eur. J. 2013, 19, 5996-6004.
16. (a) Tian, J.; Yamagiwa, N.; Matsunaga, S.; Shibasaki, M., Angew.
Chem. Int. Ed. 2002, 41, 3636-3638. (b) Sasai, H.; Bougauchi, M.;
Arai, T.; Shibasaki, M., Tetrahedron Lett. 1997, 38, 2717-2720. (c)
Sasai, H.; Emori, E.; Arai, T.; Shibasaki, M., Tetrahedron Lett. 1996,
37, 5561-5564. (d) Sasai, H.; Tokunaga, T.; Watanabe, S.; Suzuki, T.;
Itoh, N.; Shibasaki, M., J. Org. Chem. 1995, 60, 7388-7389. (e) Sasai,
H.; Kim, W. S.; Suzuki, T.; Shibasaki, M.; Mitsuda, M.; Hasegawa,
J.; Ohashi, T., Tetrahedron Lett. 1994, 35, 6123-6126.
17. While full characterization was only undertaken for 1–Pr•2CHO,
other early RE’s could also be readily crystallized using identical
conditions.
18. It should be emphasized that the results of this Michael reaction
were obtained under rigorously anhydrous conditions. The original
work by Shibasaki and coworkers reported 2% ee for 1–La, however,
we have shown in a recent work (ref. 1x) that trace amounts of water
can have significant effects on the resulting stereoselectivity of the
Walsh, P. J., Adv. Synth. Catal. 2007, 349, 561-565. (c) Wooten, A.
J.; Carroll, P. J.; Walsh, P. J., Org. Lett. 2007, 9, 3359-3362. (d)
Wooten, A. J.; Carroll, P. J.; Walsh, P. J., Angew. Chem. Int. Ed.
2
006, 45, 2549-2552. (e) Aspinall, H. C.; Bickley, J. F.; Dwyer, J. L.
M.; Greeves, N.; Kelly, R. V.; Steiner, A., Organometallics 2000, 19,
416-5423. (f) Aspinall, H. C.; Dwyer, J. L. M.; Greeves, N.; Steiner,
5
A., Organometallics 1999, 18, 1366-1368. (g) Di Bari, L.; Lelli, M.;
Pintacuda, G.; Pescitelli, G.; Marchetti, F.; Salvadori, P., J. Am.
Chem. Soc. 2003, 125, 5549-5558. (h) Robinson, J. R.; Gordon, Z.;
Booth, C. H.; Carroll, P. J.; Walsh, P. J.; Schelter, E. J., J. Am. Chem.
Soc. 2013, 135, 19016-19024. (i) Robinson, J. R.; Carroll, P. J.;
Walsh, P. J.; Schelter, E. J., Angew. Chem. Int. Ed. 2012, 51, 10159-
1
0163. (j) Di Bari, L.; Lelli, M.; Salvadori, P., Chem. Eur. J. 2004,
10, 4594-4598. (k) Yamagiwa, N.; Matsunaga, S.; Shibasaki, M.,
Angew. Chem. Int. Ed. 2004, 43, 4493-4497. (l) Horiuchi, Y.;
Gnanadesikan, V.; Ohshima, T.; Masu, H.; Katagiri, K.; Sei, Y.;
Yamaguchi, K.; Shibasaki, M., Chem. Eur. J. 2005, 11, 5195-5204.
5
2
6
. Yamagiwa, N.; Matsunaga, S.; Shibasaki, M., J. Am. Chem. Soc.
003, 125, 16178-16179.
. Previous solution characterization has been limited to mass
product. .
19.
species, Li
+
Exchange was also observed between two of the minor Li
and Li
spectrometry. See references 2b, 2d, 3e, 4l.
. (a) Orrell, K. G., Two-Dimensional Methods of Monitoring
D
G
(Figure S35 and Table S10). Absence of
+
7
exchange of the remaining Li species was likely due to their
shortened relaxation times.
Exchange. In eMagRes, John Wiley & Sons, Ltd: 2007. (b) Perrin, C.
L.; Dwyer, T. J., Chem. Rev. 1990, 90, 935-967. (c) Jeener, J.; Meier,
B. H.; Bachmann, P.; Ernst, R. R., J. Chem. Phys. 1979, 71, 4546-
20. (a) Arnett, E. M.; Maroldo, S. G.; Schilling, S. L.; Harrelson, J.
A., J. Am. Chem. Soc. 1984, 106, 6759-6767. (b) Olmstead, W. N.;
Bordwell, F. G., J. Org. Chem. 1980, 45, 3299-3305.
21. Matthews, W. S.; Bares, J. E.; Bartmess, J. E.; Bordwell, F. G.;
Cornforth, F. J.; Drucker, G. E.; Margolin, Z.; McCallum, R. J.;
McCollum, G. J.; Vanier, N. R., J. Am. Chem. Soc. 1975, 97, 7006-
7014.
22. 30 mol % of water was used to ensure the best reproducibility of
observed catalyst performance. Previous reports introduced water
either through the synthesis of the catalyst or as an additive, ranging
from 30-1500 mol % (ref. 2a, 3c, 23)
4
553. (d) Coord. Chem. Rev. 1996, 150, 185-220.
8. (a) Babailov, S. P., Prog. Nucl. Magn. Reson. Spectrosc. 2008, 52,
-21. (b) Cahill, L. S.; Chapman, R. P.; Britten, J. F.; Goward, G. R.,
1
J. Phys. Chem. B 2006, 110, 7171-7177. (c) Pastor, A.; Martinez-
Viviente, E., Coord. Chem. Rev. 2008, 252, 2314-2345. (d) Kalverda,
A. P.; Salgado, J.; Dennison, C.; Canters, G. W., Biochemistry 1996,
3
5, 3085-3092. (e) Fischer, S.; Grootenhuis, P. D. J.; Groenen, L. C.;
Vanhoorn, W. P.; Vanveggel, F.; Reinhoudt, D. N.; Karplus, M., J.
Am. Chem. Soc. 1995, 117, 1611-1620. (f) Chen, M. C.; Roberts, J. A.
S.; Marks, T. J., J. Am. Chem. Soc. 2004, 126, 4605-4625. (g) Brotin,
ACS Paragon Plus Environment