C O M M U N I C A T I O N S
Scheme 1
Scheme 2
In conclusion, this study shows the first use of an electron-
reservoir complex and air for clean deprotonation. Efficient
the new imidazolium salt 4H Cl- was synthesized (Supporting
+
+
-
Information). Reaction of t-BuOK with 4H Cl does not provide
fast deprotonation, but development of a green color corresponding
to a green charge-transfer complex (eq 3)19 whose H NMR peaks
are close to those of the starting material, and the UV-vis spectrum
is shown in Figure 1 in the Supporting Information.
+
-
+
-
deprotonation of the imidazolium salts 2H Cl and 3H Cl to the
stable carbenes 2 and 3 best proceeds under ambient conditions
using the electron-reservoir complex 1 and air in a variety of
solvents, whereas the reaction of 1 with air to give the base 5 should
1
+
-
be carried out in THF before deprotonation of 4H Cl in order to
take into account the sensitivity to air of the functional carbene 4.
Thus, this study is the first one demonstrating that 5 is a very useful
neutral base whose acidic form is removed from the reaction
medium (thus recyclable) after deprotonation by precipitation. This
use of 5 is essential, when the deprotonation yields a fragile species,
and can potentially be generalized to many other systems.
Note Added after ASAP Publication. Production error published
previous revision of Supporting Information March 18, 2006; Editor
We notice that other electron-rich reagents, such as cobaltocene,
approved at acceptance Supporting Information published April 4, 2006.
Supporting Information Available: Syntheses and NMR spectra
of 2-4 and 6, and UV-vis spectra of the colored charge-transfer products
of donors with 4H Cl . This material is available free of charge via the
Internet at http://pubs.acs.org.
also give a blue-green charge-transfer complex upon reaction with
+
-
+
-
2
H Cl or 4H Cl (eq 4; see the UV-vis spectrum in the
+
-
Supporting Information).
References
(
(
(
1) (a) Astruc, D. Acc. Chem. Res. 1986, 19, 377. (b) Astruc, D. Electron
Transfer and Radical Processes in Transition Metal Chemistry; VCH:
New York, 1995.
2) (a) Chauvin, Y.; Mussmann, L.; Olivier, H. Angew. Chem., Int. Ed. Engl.
1
995, 34, 2698. (b) Dupont, J.; de Souza, R. F.; Suarez, P. A. Chem.
ReV. 2002, 102, 3667.
3) (a) Arduengo, A. J., III; Harlow, R. L.; Kline, M. J. Am. Chem. Soc.
1
991, 113, 361. (b) Arduengo, A. J., III; Goerlich, J. R.; Krafcyk, R.;
No reduction occurs because such an electron transfer between
the donor and the imidazolium acceptor is strongly endergonic (by
Marshall, W. J. Angew. Chem., Int. Ed. 1998, 37, 1963. (c) Arduengo, A.
J., III. Acc. Chem. Res. 1999, 32, 913.
(4) Bourissou, D.; Guerret, O.; Gaba ¨ı , F. P.; Bertrand, G. Chem. ReV. 2000,
1
.3 V), the reduction potential of imidazolium salts being extremely
100, 175.
20
negative. Clyburne pointed out that monoelectronic reduction of
(5) Igau, A.; Grutzmacher, H.; Baceiredo, A.; Bertrand, G. J. Am. Chem. Soc.
1988, 110, 6463.
+
-
the imidazolium salts 2H Cl provides the carbene. The reduction
potential value of the salts is so negative, however (-2.68 V vs
ferrocenium/ferrocene), that only the extremely strong reductant
potassium metal (excess) in refluxing THF can be used,20 which
limits the possible scale and compatibility with side functional
groups and the presence of reagents in situ. It is well-known that
carbenes have a rich chemistry,4 thus a deprotonation method
removing the chemical used for deprotonation is advisable.
(
6) (a) Herrmann, W. A.; K o¨ cher, C. Angew. Chem., Int. Ed. Engl. 1997, 36,
2163. (b) Herrmann, W. A. Angew. Chem., Int. Ed. 2002, 41, 1290.
7) (a) Scholl, M.; Trnka, T. M.; Morgan, J. P.; Grubbs, R. H. Tetrahedron
Lett. 1999, 40, 2247. (b) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H.
Org. Lett. 1999, 1, 953. (c) Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res.
(
2001, 34, 18.
(
8) (a) Huang, J.; Stevens, E. D.; Nolan, S. P.; Petersen, J. L. J. Am. Chem.
Soc. 1999, 121, 2647. (b) Jafarpour, L.; Nolan, S. P. AdV. Organomet.
Chem. 2001, 46, 181.
(
9) Ackermann, L.; F u¨ rstner, A.; Weskamp, T.; Kohl, F. J.; Herrmann, W.
A. Tetrahedron Lett. 1999, 40, 4787.
(
(
(
10) Astruc, D. New J. Chem. 2005, 29, 42.
+
-
Deprotonation of 4H Cl is best carried out using 5 at -20 °C
in ether and yields 4. The reaction is now very convenient because
it proceeds with precipitation of the salt 1 Cl of the protonated
11) Nolan S. P. J. Organomet. Chem. 2002, 653, 69.
12) Gr u¨ ndemann, S.; Kovacevic, A.; Albrecht, M.; Faller, J. W.; Crabtree R.
H. Chem. Commun. 2001, 2274.
+
-
(13) Kovacevic, A.; Gr u¨ ndemann, S.; Miecznikowski, J. R.; Clot, E.; Eisenstein,
+
O.; Crabtree, R. H. Chem. Commun. 2002, 2580.
acidic form 1 of the base 5 at ambient or sub-ambient conditions.
(
14) Crabtree, R. H. Pure Appl. Chem. 2003, 75, 435.
Indeed, the stability of 4 is much lower and its air sensitivity is
higher than those of 2 and 3 due to the absence of the conjugated
double bond in 4. The H NMR spectrum of 4 shows the shielding
(15) Lebel, H.; Janes, M. K.; Charette, A. B.; Nolan, S. P. J. Am. Chem. Soc.
004, 126, 5046.
16) Hamon, J.-R.; Astruc, D.; Michaud, P. J. Am. Chem. Soc. 1981, 103, 758.
(17) Astruc, D.; Hamon, J.-R.; Roman, E.; Michaud, P. J. Am. Chem. Soc.
2
(
1
1981, 103, 7502.
of all the aromatic and NHC protons and disappearance of the
(
18) (a) Trujillo, H. A.; Casado, C. M.; Ruiz, J.; Astruc, D. J. Am. Chem. Soc.
1999, 121, 5674. (b) Valentine, J. S. Acc. Chem. Res. 1981, 14, 393.
19) For hypervalent silicon intermediates, see: Chult, C.; Corriu, R. J. P.;
Reye, C.; Young, J.-C. Chem. ReV. 1993, 93, 1371.
NCHN proton as expected, and reaction of 4 with PdCl
2
gives the
(
new biscarbene Pd complex 6 (analogous to Nolan’s biscarbene
15
Pd complex obtained with 2 ), whose MALDI TOF mass spectrum
(20) Gorodetsky, B.; Ramnial, T.; Branda, N. R.; Clyburne, J. A. C. Chem.
Commun. 2004, 1972.
+
presents the molecular peak corresponding to [M] at 851 mu
(Scheme 2).
JA058421+
J. AM. CHEM. SOC.
9
VOL. 128, NO. 17, 2006 5603