acids as coupling partners opens up the possibility of installing
hydrophobic groups onto a protein surface, without the need
5
,9
for organic solvents or denaturing conditions.
We are now working towards unlocking the potential of
Suzuki–Miyaura couplings, and investigating their scope for
modification of proteins. We are particularly interested in the
installation of hydrophobic groups, and the formation of
bi-aryls as a method for fluorogenic protein labelling. We
thank Prof. P.G. Schultz for donation of pEVOL (pIPhe)
plasmid, Justin M. Chalker, Drs Huiwang Ai, Mark
Batchelor, John Porter and Rikki Alexander for helpful
discussions, and UCB and BBSRC for funding. BGD is a
Royal Society Wolfson Research Merit Award recipient and is
supported by an EPSRC LSI Platform grant.
Notes and references
1
2
3
4
5
6
E. M. Sletten and C. R. Bertozzi, Angew. Chem., Int. Ed., 2009, 48,
974.
C. P. R. Hackenberger and D. Schwarzer, Angew. Chem., Int. Ed.,
008, 47, 10030–10074.
J. M. Chalker, G. J. L. Bernardes, Y. A. Lin and B. G. Davis,
Chem.–Asian J., 2009, 4, 630–640.
A. J. de Graaf, M. Kooijman, W. E. Hennink and
E. Mastrobattista, Bioconjugate Chem., 2009, 20, 1281–1295.
J. M. Antos and M. B. Francis, Curr. Opin. Chem. Biol., 2006, 10,
6
2
ꢀ
Scheme 2 Coupling of furan-3-boronic acid to MBP–E13 . (a) t = 0,
b) t = 1 h, (c) t = 2 h.
(
À1
myoglobin (1 mg mL ) (see ESIw). A diad of 3-MPrAc with a
propane linker, 2, was also synthesised, and showed similar
scavenging ability at double the number of equivalents.
Now in a position to more readily investigate Suzuki–
Miyaura couplings directly on proteins, this system was
applied to MBP. Initial experiments showed optimal conditions
to be highly dependent on both palladium and boronic acid
concentrations. We chose to use furan-3-boronic acid as our
coupling partner, as we had previously observed a high
2
53–262.
J. M. Chalker, Y. A. Lin, O. Boutureira and B. G. Davis, Chem.
Commun., 2009, 3714–3716.
7 Y. A. Lin, J. M. Chalker, N. Floyd, G. J. L. Bernardes and
B. G. Davis, J. Am. Chem. Soc., 2008, 130, 9642–9643.
8
Y. A. Lin, J. M. Chalker and B. G. Davis, J. Am. Chem. Soc., 2010,
32, 16805–16811.
9 J. M. Chalker, C. S. C. Wood and B. G. Davis, J. Am. Chem. Soc.,
009, 131, 16346–16347.
1
2
9
10 K. Kodama, S. Fukuzawa, H. Nakayama, T. Kigawa, K. Sakamoto,
T. Yabuki, N. Matsuda, M. Shirouzu, K. Takio, K. Tachibana and
S. Yokoyama, ChemBioChem, 2006, 7, 1577–1581.
coupling rate and efficiency in model reactions (Scheme 2).
Gratifyingly, at 50 equiv. of Pd, and 680 equiv. of boronic
acid, 50% conversion was observed at 37 1C after 1 hour
11 K. Kodama, S. Fukuzawa, H. Nakayama, K. Sakamoto,
T. Kigawa, T. Yabuki, N. Matsuda, M. Shirouzu, K. Takio,
S. Yokoyama and K. Tachibana, ChemBioChem, 2007, 8, 232–238.
(
Scheme 2b). After 2 hours, complete conversion to the cross-
coupled product was observed (Scheme 2c). In the absence of
either palladium or boronic acid no reaction was observed,
consistent with the proposed coupling mechanism. In addition, in
the absence of 3-MPrAc no discernable protein peak could
be observed by LC-MS, indicating the critical use of the
scavenger during reaction analysis (see ESIw).
1
2 E. Brustad, M. L. Bushey, J. W. Lee, D. Groff, W. Liu and
P. G. Schultz, Angew. Chem., Int. Ed., 2008, 47, 8220–8223.
13 N. Sharma, R. Furter, P. Kast and D. A. Tirrell, FEBS Lett., 2000,
67, 37–40.
4
4 A. J. Baldwin, J. A. J. Arpino, W. R. Edwards, E. M. Tippmann
1
and D. D. Jones, Mol. BioSyst., 2009, 5, 764–766.
15 T. L. Hendrickson, V. d. Crecy-Lagard and P. Schimmel, Annu.
´
Rev. Biochem., 2004, 73, 147–176.
6 K. Kirshenbaum, I. S. Carrico and D. A. Tirrell, ChemBioChem,
In conclusion, we have developed a method for scavenging
palladium from protein surfaces using the ligand 3-MPrAc.
This scavenging was essential for LC-MS analysis of the
Suzuki–Miyaura cross-coupling. We then used this technique
to undertake and optimize the first reported full-conversion
Suzuki–Miyaura coupling on a protein at a genetically
incorporated amino acid. This reaction did not require elevated
temperatures or mixed solvents, and proceeded to completion
in 2 hours. This site-specific reaction is an addition to the ‘tool-kit’
for protein modification, and also allows the formation of
structures previously difficult to produce by conventional
methods. For example, the furano-phenylalanine created here
on MBP has not been previously incorporated by any other
means, and exhibits a unique spectral signature which may
prove useful for protein tracking. The work presented here
generalizes Suzuki–Miyaura couplings on proteins and makes
it more applicable as a methodology for chemical post-
translational modification. In particular, the use of boronic
1
2
002, 3, 235–237.
17 D. R. Liu, T. J. Magliery, M. Pastrnak and P. G. Schultz, Proc.
Natl. Acad. Sci. U. S. A., 1997, 94, 10092–10097.
1
1
2
8 J. Guo, E. M. Charles III, H. S. Lee, D. Groff and P. G. Schultz,
Angew. Chem., Int. Ed., 2009, 48, 9148–9151.
9 J. Xie, L. Wang, N. Wu, A. Brock, G. Spraggon and P. G. Schultz,
Nat. Biotechnol., 2004, 22, 1297–1301.
0 T. S. Young, I. Ahmad, J. A. Yin and P. G. Schultz, J. Mol. Biol.,
2
010, 395, 361–374.
2
2
1 B. G. Davis, Pure Appl. Chem., 2009, 81, 285–298.
2 J. D. Fox, R. B. Kapust and D. S. Waugh, Protein Sci., 2001, 10,
622–630.
2
3 M. B. Zwick, L. L. C. Bonnycastle, K. A. Noren, S. Venturini,
E. Leong, C. F. Barbas, C. J. Noren and J. K. Scott, Anal.
Biochem., 1998, 264, 87–97.
24 Y. Urawa, M. Miyazawa, N. Ozeki and K. Ogura, Org. Process
Res. Dev., 2003, 7, 191–195.
2
ˇ
5 M. Prashad, Y. Liu and O. Repic, Adv. Synth. Catal., 2003, 345,
533–536.
6 L. M. Rossi, L. L. R. Vono, F. P. Silva, P. K. Kiyohara,
E. L. Duarte and J. R. Matos, Appl. Catal., A, 2007, 330, 139–144.
2
1
700 Chem. Commun., 2011, 47, 1698–1700
This journal is c The Royal Society of Chemistry 2011