Please do not adjust margins
Chemical Science
Page 6 of 7
DOI: 10.1039/C5SC01914A
ARTICLE
Journal Name
Construction of these highly functionalized enol ethers University (LSU) College of Science and the Louisiana Board of
provided unique venue to access various structurally Regents through the PFUND Award (LEQSF-EPS(2015)-PFUND-
formidable quaternary center-containing molecular 395). C.E.A. thanks the Louisiana Board of Regents for the
architectures (Scheme 3). For example, treatment of Graduate Fellowship (LEQSF(2011-16)-GF-03). J.R.S. thanks
a
methylenol ether 21a to stoichiometric toluenesulfonic acid the Louisiana Board of Reagents for the Graduate Fellowship
monohydrate in THF at -20°C readily produced the (LEQSF(2014-19)-GF-02).
corresponding stereochemically elaborate ketone 29 in 73%
yield with 5.5:1 diastereoselection. Our ability to install two
Notes and references
aromatic substituents, each at the
α
ketone, while simultaneously introducing an
- and
α
’-positions of
-quaternary
α
‡
§
These authors contributed equally.
X-Ray Crystallographer
center, clearly demonstrated the strength of our methodology.
Methylenol ether 21a could also be subjected to palladium-
catalyzed hydrogenation. These conditions introduced a
stereotriad in methylated cyclopentanol 30 in a good yield
with a decent control of diastereoselectivity.
1. a) A. J. Frontier and C. Collison, Tetrahedron, 2005, 61, 7577-
7606; b) T. N. Grant, C. J. Rieder and F. G. West, Chem.
Commun., 2009, 5676-5688; c) W. Nakanishi and F. G. West,
Curr. Opin. Drug Discov. Dev., 2009, 12, 732-751; d) N.
Shimada, C. Stewart and M. A. Tius, Tetrahedron, 2011, 67,
5851-5870; e) T. Vaidya, R. Eisenberg and A. J. Frontier,
ChemCatChem, 2011, 3, 1531-1548.
2. a) A. G. Lohse and R. P. Hsung, Chem. Eur. J., 2011, 17, 3812-
3822; b) M. Harmata, Chem. Commun., 2010, 46, 8904-8922; c)
M. Harmata, Chem. Commun., 2010, 46, 8886-8903; d) D. A.
Foley and A. R. Maguire, Tetrahedron, 2010, 66, 1131-1175; e)
M. Harmata, Adv. Synth. Catal., 2006, 348, 2297-2306; f) M. A.
Battiste, P. M. Pelphrey and D. L. Wrightthl, Chem. Eur. J.,
2006, 12, 3438-3447; g) B. Niess and H. M. R. Hoffmann,
Angew. Chem. Int. Ed., 2005, 44, 26-29; h) I. V. Hartung and H.
M. R. Hoffmann, Angew. Chem. Int. Ed., 2004, 43, 1934-1949; i)
M. Harmata and P. Rashatasakhon, Tetrahedron, 2003, 59,
2371-2395; j) M. Harmata, Acc. Chem. Res., 2001, 34, 595-605.
3. a) E. H. Krenske, S. Z. He, J. Huang, Y. F. Du, K. N. Houk and R. P.
Hsung, J. Am. Chem. Soc., 2013, 135, 5242-5245; b) H. Li, R. P.
Hughes and J. Wu, J. Am. Chem. Soc., 2014, 136, 6288-6296; c)
H. Li, J. Wu, Synthesis-Stuttgart, 2015, 47, 22-33.
The indole ring in compound 21a could also be easily
protected without compromising the methylenol ether
functionality via treatment with LDA and acetic anhydride.
The resulting acetate-protected product 31 could be further
subjected to another diastereoselective transformation, such
as oxidation of the carbon-carbon double bond using m-
CPBA.16 Interestingly, this reaction cleanly produced
structurally intricate epoxide 32 with three contiguous
quaternary centers, in 80% yield as
a 5:1 mixture of
diastereomers. Similarly, the stereochemical identity of
compounds 29, 30, and 32 was confirmed by single crystal X-
ray diffraction.11 We were also able to oxidatively cleave the
carbon-carbon double bond in methylenol ether 31 using
RuCl3/NaIO4 to furnish 1,5-ketoester 33 17
.
In addition to the
generation an sp3-sp2 connectivity, chemoselective
α-
quaternarization of ester in the presence ketone are
challenging due to the subtle acidity differences between the
relevant α
-hydrogens.8
4. a) A. W. Fort, J. Am. Chem. Soc., 1962, 84, 2620-2625; b) K.
Freter, Liebigs Ann. Chem., 1978, 1357-1364; c) B. Föhlisch and
R. Joachimi, Chem. Ber., 1987, 120, 1951-1960; d) J. Leitich and
I. Heise, Eur. J. Org. Chem., 2001, 2707-2718; e) M. Harmata, C.
Huang, P. Rooshenas and P. R. Schreiner, Angew. Chem. Int.
Ed., 2008, 47, 8696-8699; f) Q. Tang, X. Chen, B. Tiwari and Y.
R. Chi, Org. Lett., 2012, 14, 1922-1925; g) M. N. V. Wal, A. K.
Dilger and D. W. C. MacMillan, Chem. Sci., 2013, 4, 3075-3079;
h) J. Luo, H. Zhou, J. W. Hu, R. Wang and Q. Tang, RSC Adv.,
2014, 4, 17370-17377.
Conclusions
In conclusion, we detailed a new method to generate benzylic-
oxyallylic stabilized carbocations under mild Brønsted acid
catalysis and discovered that the reactivity of these novel
intermediates could be harnessed towards a regioselective
construction of quaternary centers through a direct capture
with indoles and other high value nucleophiles. Overall, this
chemistry efficiently furnished highly functionalized enol
ethers that could be conveniently derivatized to other complex
molecular architectures. Detailed mechanistic investigations
on the origin of this unprecedented control of regioselectivity
are ongoing in our laboratory, and the results will be reported
in due course.
5. C. E. Ayala, N. S. Dange, F. R. Fronczek and R. Kartika, Angew.
Chem. Int. Ed., 2015, 54, 4641–4645.
6. a) Y. Liu, S.-J. Han, W.-B. Liu and B. M. Stoltz, Acc. Chem. Res.,
2015, 48, 740-751; b) C. M. Reeves, D. C. Behenna and B. M.
Stoltz, Org. Lett., 2014, 16, 2314-2317; c) P. Zhang, H. Le, R. E.
Kyne and J. P. Morken, J. Am. Chem. Soc., 2011, 133, 9716-
9719; d) J. T. Mohr, D. C. Behenna, A. M. Harned and B. M.
Stoltz, Angew. Chem. Int. Ed., 2005, 44, 6924-6927; e) W.-B.
Liu, C. M. Reeves, S. C. Virgil and B. M. Stoltz, J. Am. Chem.
Soc., 2013, 135, 10626-10629; f) J. Li and D. Lee, Chem. Sci.,
2012, 3, 3296-3301; g) A. Y. Hong, M. R. Krout, T. Jensen, N. B.
Bennett, A. M. Harned and B. M. Stoltz, Angew. Chem. Int. Ed.,
2011, 50, 2756-2760; h) D. C. Behenna, Y. Liu, T. Yurino, J. Kim,
D. E. White, S. C. Virgil and B. M. Stoltz, Nature Chem., 2012, 4,
130-133.
Acknowledgements
This material is based upon work supported by the National
Science Foundation under CHE-1464788.
We gratefully
acknowledge generous financial support from Louisiana State
6 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins