Chemistry - A European Journal
10.1002/chem.202002264
COMMUNICATION
reduced pressure (0.05 mmHg) and it was quantitative after ~10
hours at 160 °C for 1a and at 220 °C for 1b,c. The three
dihalobenzenes were recovered as highly pure and crystalline
materials on cooling the vapors, while the residual
decamethonium diiodide 2b was a whitish powder which could
be reused for selective cocrystal formation without further
purification and with no decrease in the efficiency and selectivity
of the self-assembly.
Balagurusamy, Y. Miura, J. Smidrkal, M. Peterca, S. Nummelin, U.
Edlund, S. D. Hudson, P. A. Heiney, H. Duan, S. N. Magonov, S. A.
Vinogradov, Nature 2004, 430, 764−768; f) B. M. Rosen, C. J. Wilson,
D. A. Wilson, M. Peterca, M. R. Imam, V. Percec, Chem. Rev. 2009,
1
09, 6275-6540.
a) A. Inthasot, S.-T. Tung, S.-H. Chiu, Acc. Chem. Res. 2018, 51,
324−1337; b) B. Dietrich, Pure & Appl. Chem. 1993, 65, 1457−1464.
[
[
2]
3]
1
a) X.-M. Chen, Y. Chen, Q. Yu, B.-H. Gu, Y. Liu, Angew. Chem. Int. Ed.
2018, 57, 12519–12523; b) J. Jr. Rebek, Chem. Commun. 2000,
6
37−643.
In conclusion, this paper exemplifies the utility of
supramolecular chemistry and crystal engineering in preparing
heteromeric cocrystals for useful applications. It is proven how
the size and shape matching between cocrystal components can
drive self-assembly processes. Specifically, we have described:
[
4]
a) G. Wen, B.-H. Han, A. Müller, Chem. Rev. 2006, 106, 782−817; b) K.
B. Lipkowitz, S. Raghothama, J. Yang, J. Am. Chem. Soc. 1992, 114,
1554−1562.
[5]
a) V. Kumar, T. Pilati, G. Terraneo, G. Ciancaleoni, A. Macchioni, G.
Resnati, P. Metrangolo, Angew. Chem. Int. Ed. 2018, 57, 1327–1331; b)
P. Metrangolo, Y. Carcenac, M. Lahtinen, T. Pilati, K. Rissanen, A. Vij,
G. Resnati, Science 2009, 323, 1461−1464; c) S. H. Jungbauer, D.
Bulfield, F. Kniep, C. W. Lehmann, E. Herdtweck, S. M. Huber, J. Am.
Chem. Soc. 2014, 136, 16740−16743; d) L. Maugeri, M. G. Jamieson,
D. B. Cordes, A. M. Z. Slawin, D. Philip, Chem. Sci. 2017, 8, 938–945;
e) D. Cao, M. Hong, A. K. Blackburn, Z. L. Liu, J. M. Holcroft, J. F.
Stoddart, J. Chem. Sci. 2014, 5, 4242–4248; f) J. Stoesser, G. Rojas, D.
Bulfield, P. I. Hidalgo, J. Pasan, C. Ruiz-Perez, C. A. Jimenez, S. M.
Huber, New J. Chem. 2018, 42, 10476−10480; g) V. Kumar, T. Pilati, G.
Terraneo, F. Meyer, P. Metrangolo, G. Resnati, Chem. Sci. 2017, 8,
-
the formation of cocrystals between HaBs acceptor and poor
donor modules of decamethonium diiodide 2b and p-dichloro- or
p-dibromobenzenes 1a,b; the regioselective formation of
-
cocrystals between 2b and p-dihalobenzenes 1a-c in the
presence of respective ortho and meta isomers 1d-f and 1g-i
and even of an excess of them. The relevance of the strength of
inter-component interactions (specifically the C–X∙∙∙I HaB) in
driving self-assembly processes is displayed by the cocrystal
formation between mismatching components when strong C–I∙∙∙I
HaBs are present. The relative relevance of the size and shape
matching vs. the strength of inter-component interactions in
driving self-assembly processes is clarified by the
chemoselective cocrystal formation from solutions containing 2b
and three matching partners 1a-c. The applicative value of
reported regio- and chemoselective cocrystallizations is
demonstrated by the quantitative separation of mixtures of o-/m-
1801−1810; h) L.-Y. You, S.-G. Chen, X. Zhao, Y. Liu, W.-X. Lan, Y.
Zhang, H.-J. Lu, C.-Y. Cao, Z.-T. Li, Angew. Chem., Int. Ed. 2012, 51,
1657−1661; i) P. L. Wash, S. Ma, U. Obst, J. Rebek, J. Am. Chem. Soc.
1999, 121, 7973−7974; j) W.-Y. Zhang, Y.-J. Lin, Y.-F. Han, G.-X. Jin, J.
Am. Chem. Soc. 2016, 138, 10700−10707; k) D. Liu, J.-P. Lang, B. F.
Abrahams, J. Am. Chem. Soc. 2011, 133, 11042-11045; l) C.-Y. Liu, X.-
R. Chen, H.-X. Chen, Z. Niu, H. Hirao, P. Braunstein, J.-P. Lang, J. Am.
Chem. Soc. 2020, 142, 6690-6697.
[
[
6]
7]
a) G. R. Desiraju, P. S. Ho, L. Kloo, A. C. Legon, R. Marquardt, P.
Metrangolo, P. Politzer, G. Resnati, K. Rissanen, Pure Appl. Chem.
/p-dihalobenzenes and of different p-dihalobenzenes and the
recovery of pure dihalobenzenes and decamethonium
component (for possible reuse). It can be expected that the
established heuristic principles will enable for identifying other
tectons which undergo selective self-assembly processes in the
absence of strong inter-component interactions.
2013, 85, 1711−1713; b) P. Metrangolo, T. Pilati, G. Resnati, A.
Stevenazzi, Current Opinion Coll. Interface Sc. 2003, 8, 215−222.
a) C. B. Aakeröy, M. Baldrighi, J. Desper, P. Metrangolo, G. Resnati,
Chem. Eur. J. 2013, 19, 16240–16247; b) K. E. Riley, J. S. Murray, J.
Fanfrlík, J. Řezáč, R. J. Solá, M. C. Concha, F. M. Ramos, P. Politzer, J.
Mol. Model. 2011, 17, 3309–3318; c) K. E. Riley, J. S. Murray, J.
Fanfrlík, J. Řezáč, R. J. Solá, M. C. Concha, F. M. Ramos, P. Politzer, J.
Mol. Model. 2013, 19, 4651−4659; d) T. M. Beale, M. G. Chudzinski, M.
G. Sawar, M. S. Taylor, Chem. Soc. Rev. 2013, 42, 1667−1680; e) J. S.
Murray, K. Paulsen, P. Politzer, Proc. Indian Acad. Sci. (Chem. Sci.)
1994, 106, 267−275.
Acknowledgements
We are grateful for financial support from the National Key R&D
Program of China (Grant No. 2017YFA0206800), the NSFC
[8]
a) G. Cavallo, P. Metrangolo, R. Milani, T. Pilati, A. Priimagi, G. Resnati,
G. Terraneo, Chem. Rev. 2016, 116, 2478−2601; b) R. B. Walsh, C. W.
Padgett, P. Metrangolo, G. Resnati, T. W. Hanks, W. T. Pennington,
Cryst. Growth Des. 2001, 1, 165−175; c) V. N. G. Lindsay, W. Lin, A. B.
Charette, J. Am. Chem. Soc. 2009, 131, 16383−16385; d) F. Zapata, A.
Caballero, N. G. White, T. D. W. Claridge, P. J. Cota, V. Felix, P. D.
Beer, J. Am. Chem. Soc. 2012, 134, 11533−11541; e) C. B. Aakeröy, T.
K. Wijethunga, J. Desper, J. Mol. Struct. 2014, 1072, 20–27; f) M.
Freytag, P. G. Jones, B. Ahrens, A. K. Fisher, New J. Chem. 1999, 23,
(
Grant Nos. 21520102001, 21571177, 51572260), the Strategic
Priority Research Program of Chinese Academy of Sciences
Grant No. XDB20000000), Key Research Program of Frontier
(
Sciences, CAS (Grant No. QYZDJ-SSW-SLH045), the Key
Research Program of the Chinese Academy of Sciences, (Grant
No. ZDRW-CN-2016-1), the Natural Science Foundation of
Fujian Province, China (Grant No. 2018J01674), and the
Fondazione Cariplo (project 2014-0746, PHAEDRA).
1137−1139.
[
[
[
9]
J. D. Mottishaw, A. R. Erck, J. H. Kramer, H. Sun, M. Koppang, J.
Chem. Ed. 2015, 92, 1846−1852.
10] C. M. Widdifield, G. Cavallo, G. A. Facey, T. Pilati, J. Lin, P. Metrangolo,
Resnati, G.; D. L. Bryce, Chem. Eur. J. 2013, 19, 11949−11962.
Keywords: halogen bond • cocrystallization • selectivity • size-
matching effect • supramolecular chemistry
11] a) J. Martí-Rujas, L. Meazza, G. K. Lim, G. Terraneo, T. Pilati, K. D. M.
Harris, P. Metrangolo, G. Resnati, Angew. Chem., Int. Ed. 2013, 52,
[
1]
a) B. L. Feringa, Angew. Chem. Int. Ed. 2017, 56, 11060–11078; b) S.
Erbas-Cakmak, D. A. Leigh, C. T. McTernan, A. L. Nussbaumer, Chem.
Rev. 2015, 115, 10081−10206; c) T. Aida, E.W. Meijer, S. I. Stupp,
Science 2012, 335, 813−817; d) V. Percec, M. Glodde, T. K. Bera, Y.
Miura, I. Shiyanovskaya, K. D. Singer, V. S. K. Balagurusamy, P. A.
Heiney, I. Schnell, A. Rapp, H.-W. Spiess, S. W. Hudsonk, H. Duank,
Nature 2002, 419, 384−387; e) V. Percec, A. E. Dulcey, V. S. K.
1
3444-13448; b) J.-X. Lin, J. Martí-Rujas, P. Metrangolo, T. Pilati, S.
Radice, G. Resnati, G. Terraneo, Cryst. Growth Des. 2012, 12, 5757-
762; c) D. M. García, J. Martí-Rujas, P. Metrangolo, C. Peinador, T.
Pilati, G. Resnati, G. Terraneo, M. Ursini, CrystEngComm 2011, 13,
411 - 4416; d) A. Abate, M. Brischetto, G. Cavallo, M. Lahtinen, P.
5
4
Metrangolo, T. Pilati, S. Radice, G. Resnati, K. Rissanen, G. Terraneo,
Chem. Commun. 2010, 46, 2724-2726.
4
This article is protected by copyright. All rights reserved.