C O MMU N I C A T I O N S
Table 1. Asymmetric Hydrogenation of (E/Z)-4
and (Z)-â-dehydroamino acid derivatives with both aliphatic and
aromatic side chains. Particularly, two different catalytic systems
have been established for E (up to 99% ee) and Z (up to 95% ee)
isomers, based on the very easy fine-tuning of monophosphora-
midites leading to selectivities comparable to or better than those
reached with bidentate ligands reported so far.
cat
p
time
(h)
conv
(%)c
ee
(%)d
entry
4
ligand
solvent
(%)
(bar)
Acknowledgment. We thank Mr. M. B. van Gelder and Mr. E.
P. Schudde for technical support and Mr. M. van den Berg, Dr. J.
A. F. Boogers, and Dr. A. H. M. de Vries for useful discussions.
D.P. also thanks the European Community (IHP Program) for the
award of a Marie Curie Fellowship (contract no. HPMF-CT-2002-
a
1
(Z)-4a
(Z)-4a
(Z)-4a
(Z)-4a
(Z)-4a
(Z)-4a
(Z)-4b
(Z)-4c
(Z)-4c
(Z)-4d
(Z)-4d
(Z)-4e
(Z)-4f
3
3
3
3
3
3
3
3
3
3
3
3
3
EtOAc
i-PrOH
i-PrOH
i-PrOH
i-PrOH
i-PrOH
i-PrOH
i-PrOH
i-PrOH
i-PrOH
i-PrOH
i-PrOH
i-PrOH
1
1
1
1
1
2
2
2
0.5
2
2
2
2
1
1
1
24
24
3
16
1
0.3
0.3
0.3
1
0.3
0.05
0.3
0.3
88
98
40
3
20
47
77
94
95
94
94
94
92
92
92
94
a
2
a
3
a
4
10
10
10
10
10
10
10
25
10
10
100
100
100
100
100
100
100
100
100
100
b
5
b
6
7
8
9
0
1
2
3
01612).
b
b
Supporting Information Available: Experimental and chromato-
graphic details (PDF). This material is available free of charge via the
Internet at http://pubs.acs.org.
b
b
1
1
1
1
b
b
b
References
a
a
a
a
a
b
b
b
b
b
b
14
15
16
17
18
19
20
21
22
23
24
(E)-4a
(E)-4a
(E)-4a
(E)-4a
(E)-4a
(E)-4a
(E)-4b
(E)-4c
(E)-4c
(E)-4c
(E)-4d
3
3
1
1
2
2
2
2
2
2
2
i-PrOH
CH2Cl2
i-PrOH
CH2Cl2
CH2Cl2
CH2Cl2
CH2Cl2
CH2Cl2
CH2Cl2
CH2Cl2
CH2Cl2
1
1
1
1
1
2
2
2
10
10
10
10
10
10
10
10
25
25
10
18
52
100
49
100
86
100
100
100
100
100
100
52
83
64
95
98
99
99
98
99
98
99
(1) (a) Knowles, W. S. Angew. Chem., Int. Ed. 2002, 41, 1998. (b) Noyori,
R. Angew. Chem., Int. Ed. 2002, 41, 2008. (c) Chaloner, P. A.; Esteruelas,
M. A.; Jo o´ , F.; Oro, L. A. Homogeneous Hydrogenation; Kluwer:
Dordrecht, 1994. (d) Brown, J. M. In ComprehensiVe Asymmetric
Catalysis; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer:
Berlin, 1999; Vol. 1, Chapter 5.1.
(2) (a) Zhang, X. Enantiomer 1999, 4, 541. (b) Noyori, R. Asymmetric
Catalysis in Organic Synthesis; Wiley & Sons: New York, 1994; Chapter
2.
18
18
18
18
4
4
4
3
6
(3) (a) Knowles, W. S.; Sabacky, M. J. Chem. Commun. 1968, 1445. (b)
Horner, L.; Siegel, H.; B u¨ the, H. Angew. Chem. 1968, 80, 1034. (c)
Knowles, W. S.; Sabacky, M. J.; Vineyard, B. D. Chem. Commun. 1972,
2
0.5
2
4
10. (d) Lagasse, F.; Kagan, H. B. Chem. Pharm. Bull. 2000, 48, 315.
(
4) For a recent rewiew, see: Komarov, I. V.; B o¨ rner, A. Angew. Chem., Int.
a
Ed. 2001, 40, 1197.
The reaction was performed at room temperature by dissolving 4,
b
(5) (a) Guillen, F.; Fiaud, J.-C. Tetrahedron Lett. 1999, 40, 2939. (b) Claver,
C.; Fernandez, E.; Gillon, A.; Heslop, K.; Hyett, D. J.; Martorell, A.;
Orpen, A. G.; Pringle, P. G. Chem. Commun. 2000, 961. (c) van den Berg,
M.; Minnaard, A. J.; Schudde, E. P.; van Esch, J.; de Vries, A. H. M.; de
Vries, J. G.; Feringa, B. L. J. Am. Chem. Soc. 2000, 122, 11539. (d) Reetz,
M. T.; Mehler, G. Angew. Chem., Int. Ed. 2000, 39, 3889.
(6) For other recent examples: (a) Fu, Y.; Xie, J.-H.; Hu, A.-G.; Zhou, H.;
Wang, L.-X.; Zhou, Q.-L. Chem. Commun. 2002, 480. (b) Junge, K.;
Oehme, G.; Monsees, A.; Riermeier, T.; Dingerdissen, U.; Beller, M.
Tetrahedron Lett. 2002, 43, 4977. (c) Zeng, Q.; Liu, H.; Cui, X.; Mi, A.;
Jiang, Y.; Li, X.; Choi, M. C. K.; Chan, A. S. C. Tetrahedron: Asymmetry
2002, 13, 115. (d) Chen, W.; Xiao, J. Tetrahedron Lett. 2001, 42, 2897.
Rh(COD)2BF4, and ligand (100:1:2) in the suitable solvent. A solution of
Rh(COD)2BF4 and 2 equiv of ligand in CH2Cl2 (10 mM) was added to the
reaction mixture. Determined by H NMR. Determined by chiral GC.
The configuration of the product is R (5a-d) and S (5e-f). See Supporting
Information for details. For the absolute configuration of the ligands, see
Figure 1.
c
1
d
process, several observations were made: (1) A protic solvent leads
to an important increase in the enantioselectivity (compare entries
and 2).15 (2) At low hydrogen pressure, the ee decreases during
1
(e) Reetz, M. T.; Sell, T. Tetrahedron Lett. 2000, 41, 6333.
the reaction (entries 2 and 3). (3) Higher hydrogen pressure results
in a considerable increase in the enantioselectivity (entries 3 and
(
7) (a) van den Berg, M.; Haak, R. M.; Minnaard, A. J.; de Vries, A. H. M.;
de Vries, J. G.; Feringa, B. L. AdV. Synth. Catal. 2002, 344, 1003. (b)
Hu, A.-G.; Fu, Y.; Xie, J.-H.; Zhou, H.; Wang, L.-X.; Zhou, Q.-L. Angew.
Chem., Int. Ed. 2002, 41, 2348. (c) Jia, X.; Guo, R.; Li, X.; Yao, X.;
Chan, A. S. C. Tetrahedron Lett. 2002, 43, 5541.
8) (a) EnantioselectiVe Synthesis of â-Amino Acids; Juaristi, E., Ed.; Wiley-
VCH: New York, 1997. (b) Gellman, S. H. Acc. Chem. Res. 1998, 31,
173. (c) Cole, D. C. Tetrahedron 1994, 50, 9517.
9) (a) Lee, S.-g.; Zhang, Y. J. Org. Lett. 2002, 4, 2429. (b) Zhou, Y.-G.;
Tang, W.; Wang, W.-B.; Li, W.; Zhang, X. J. Am. Chem. Soc. 2002, 124,
4952. (c) Heller, D.; Holz, J.; Drexler, H.-J.; Lang, J.; Drauz, K.; Krimmer,
H.-P.; B o¨ rner, A. J. Org. Chem. 2001, 66, 6816. (d) Yasutake, M.;
Gridnev, I. D.; Higashi, N.; Imamoto, T. Org. Lett. 2001, 3, 1701. (e)
Zhu, G.; Chen, Z.; Zhang, X. J. Org. Chem. 1999, 64, 6907. (f) Lubell,
W. D.; Kitamura, M.; Noyori, R. Tetrahedron: Asymmetry 1991, 2, 543.
1
6
4
h
). (4) A dramatic increase in the reaction rate (TOF up to 1000
-
1
, entry 11) and in the ee of the product is obtained when a
(
preformed solution of both catalyst precursor and ligand in CH
2
-
Cl is added to the reaction mixture (entries 4 and 5). Under these
2
(
conditions, it is possible to reduce the amount of catalyst while
maintaining the same enantioselectivity (TON ) 200, entry 9).
In contrast to the results with the Z isomers, when studying the
hydrogenation of (E)-4a-d, ligand (S)-2 turned out to be the most
efficient, affording excellent enantioselectivities (98-99% ee,
entries 19-21 and 24) when using 2 mol % of Rh(COD)
catalyst precursor and 2 equiv of ligand 2 with respect to rhodium
in CH Cl under 10 bar of H . In this case, it was observed that by
(
g) Furukawa, M.; Okawara, T.; Noguchi, Y.; Terawaki, Y. Chem. Pharm.
Bull. 1979, 27, 2223. (h) Achiwa, K.; Soga, T. Tetrahedron Lett. 1978,
3, 1119.
2 4
BF as
1
(
10) Other authors (see ref 7b) recently also described the beneficial influence
2
2
2
of small alkyl groups on the nitrogen.
using a nonprotic solvent, better conversion and enantioselectivity
were obtained as compared to a protic solvent (entries 14 vs 15
and 16 vs 17). As in the Z series, the rate of the reaction and the
ee of the product were improved when a preformed solution of
(11) MonoPhos (1) was prepared from bis-â-naphthol and HMPT with excellent
yields: Hulst, R.; de Vries, N. K.; Feringa, B. L. Tetrahedron: Asymmetry
1994, 5, 699.
(12) See Supporting Information.
(
13) With 5% of Rh(COD)
monodentate ligand in EtOAc at room temperature, and 1 bar of H
14) Although the diastereoisomer (S,S)-3 seems to be less stable than (S,R)-
, both led to a similar ee. This result is analogous to one reported by
2 4
BF as the catalyst precursor, 11% of the
2
.
2 2
both catalyst precursor and ligand in CH Cl was added to the
(
3
reaction mixture (entries 18 and 19). Remarkably, at higher
hydrogen pressure, the same ee was reached (entry 21 and 22).16
Under these conditions, it was also possible to reduce the amount
of catalyst while maintaining the same enantioselectivity (entry 23).
In conclusion, new and readily accessible monodentate phos-
phoramidite ligands (2 and 3) have been developed that lead to
excellent ee’s and full conversions in the hydrogenation of (E)-
Reetz and Mehler in the case of monophosphites (see ref 5d).
15) It is known that polar solvents favor the hydrogenation of (Z)-â-
(acylamino)acrylates probably because these solvents can break up the
intramolecular hydrogen bond in the substrate and thus allow a selective
bidentate coordination to the metal (see ref 9a and f).
(
(16) Interestingly, it has been reported that in the case of bidentate phosphines,
the ee decreases upon increasing the pressure (see ref 9a and c).
JA028235T
J. AM. CHEM. SOC.
9
VOL. 124, NO. 49, 2002 14553