H. Kodama et al. / Journal of Organometallic Chemistry 603 (2000) 6–12
11
700 cm−1; HRMS Found: m/z 576.2024 (M+). Anal.
4.1.6. (S,R)-3,3%-Bis(4-benzyloxazol-2-yl)-1,1%-bi-2-
naphthol ((S,R)-7f)
Calc. for C38H28N2O4: M+, 576.2049.
Yield 44% (from 5); m.p. 143–145°C; MS m/z 604
In a similar manner, compounds 7b–7f were pre-
pared from (S)-2,2%-dihydroxy-1,1%-binaphthyl-3,3%-di-
carboxylic acid (S)-5 and the corresponding amino
alcohols.
1
(M+). [h]2D3 −121 (c 1, CHCl3); H-NMR (CDCl3): l
2.76–2.81 (m, 2H, ArCH2), 3.06–3.12 (m, 2H, ArCH2),
4.17 (t, J=8.8 Hz, 2H), 4.47 (t, J=8.8 Hz, 2H),
4.61–4.69 (m, 2H), 7.17–7.30 (m, 16H), 7.86–7.88 (m,
2H), 8.41 (s, 2H), 12.13 (s, 2H, OH); IR (KBr): 2900,
1600, 1500, 1430, 1350, 1300, 1260, 1220, 1200, 1150,
1030, 950, 900, 800, 750, 700 cm−1; Found: C, 79.39;
H, 5.38; N, 4.34%. Anal. Calc. for C40H32N2O4: C,
79.45; H, 5.33; N, 4.63%.
4.1.2. (S,R)-3,3%-Bis(4-phenyloxazol-2-yl)-1,1%-bi-2-
naphthol ((S,R)-7d)
Yield 55% (from 5); m.p. 156–158°C; MS m/z 576
1
(M+). [h]2D3 −189 (c 1, CHCl3); H-NMR (CDCl3): l
4.33 (t, J=9.2 Hz, 2H), 4.87 (t, J=9.2 Hz, 2H), 5.49
(t, J=9.2 Hz, 2H), 7.23–7.33 (m, 16H), 7.89–7.91 (m,
2H), 8.50 (s, 2H), 12.16 (s, 2H, OH); IR (KBr): 2800,
1600, 1500, 1450, 1330, 1250, 1200, 1150, 1130, 950,
900, 800, 750, 700 cm−1; HRMS Found: m/z 576.2054
(M+). Anal. Calc. for C38H28N2O4: M+, 576.2049.
4.2. A typical procedure for lanthanide-catalyzed
asymmetric 1,3-dipolar cycloaddition reaction
The catalyst Sc(OTf)3 (0.10 mmol) and (S,S)-7d (0.10
,
mmol) were stirred with powdered 4 A molecular sieves
(125 mg) in solvent (1.5 ml) for 0.5 h. Compounds 1
(0.50 mmol) and 2 (0.50 mmol) were added, and then
the mixture was stirred for 20 h. Distilled water was
then added to quench the reaction, and insoluble mate-
rials were filtered. The reaction mixture was extracted
with dichloromethane, and dried on anhydrous sodium
sulfate. The organic layer was evaporated to dryness
and the residue was analyzed. The reaction yield and
4.1.3. (S,S)-3,3%-Bis(4-isopropyloxazol-2-yl)-1,1%-bi-2-
naphthol ((S,S)-7b)
Yield 38% (from 5); m.p. 210–212°C; MS m/z 508
1
(M+). [h]2D3 +66 (c 1, CHCl3); H-NMR (CDCl3): l
0.93 (d, J=6.8 Hz, 6H), 0.99 (d, J=6.8 Hz, 6H),
1.74–1.83 (m, 2H, CH3CHCH3), 4.41–4.17 (m, 4H),
4.54 (t, J=8.0 Hz, 2H), 7.14–7.32 (m, 6H), 7.88–7.90
(m, 2H), 8.42 (s, 2H), 12.43 (s, 2H, OH); IR (KBr):
3000, 1600, 1500, 1440, 1370, 1300, 1250, 1200, 1150,
1135, 1060, 950, 900, 750, 700 cm−1; HRMS Found:
m/z 508.2377 (M+). Anal. Calc. for C32H32N2O4: M+,
508.2362.
1
endo:exo ratio were determined by H-NMR analysis,
and the enantiomeric excess of the endo adduct was
determined by HPLC analysis (DAICEL CHIRALCEL
OD-H column (eluent, 30:70 2-propanol–hexane; flow
rate, 0.3 ml min−1; detection, UV 220 nm)). The abso-
lute configuration was assigned by comparison of the
optical rotation with that of the literature [3a].
4.1.4. (S,R)-3,3%-Bis(4-isopropyloxazol-2-yl)-1,1%-bi-2-
naphthol ((S,R)-7e)
Yield 55% (from 5); m.p. 254–256°C; MS m/z 508
(M+). [h]2D3 −153 (c 1, CHCl3); H-NMR (CDCl3): l
1
Acknowledgements
0.93 (d, J=6.8 Hz, 6H), 0.99 (d, J=6.8 Hz, 6H),
1.70–1.82 (m, 2H, CH3CHCH3), 4.09–4.19 (m, 4H),
4.53 (t, J=8.0 Hz, 2H), 7.19–7.31 (m, 6H), 7.87–7.90
(m, 2H), 8.42 (s, 2H), 12.35 (s, 2H, OH); IR (KBr):
3000, 1630, 1500, 1440, 1340, 1300, 1260, 1220, 1200,
1150, 1135, 1060, 950, 900, 800, 750, 700 cm−1; HRMS
Found: m/z 508.2368 (M+). Anal. Calc. for
C32H32N2O4: M+, 508.2362.
We thank Dr Takayuki Yamashita for helpful discus-
sions during the course of this work. We also thank
undergraduate project students Takashi Okamoto and
Yukiko Ogura. This work was partially supported by
Doshisha University’s Research Promotion Fund and a
grant to RCAST at Doshisha University from the
Ministry of Education, Japan.
4.1.5. (S,S)-3,3%-Bis(4-benzyloxazol-2-yl)-1,1%-bi-2-
naphthol ((S,S)-7c)
References
Yield 65% (from 5); m.p. 108–110°C; MS m/z 604
1
(M+). [h]2D3 +70 (c 1, CHCl3); H-NMR (CDCl3): l
[1] (a) J.J. Tufariello, in: A. Padwa, (Ed.), 1,3-Dipolar Cycloaddi-
tion Chemistry, vol. 2, Wiley, New York, 1984, p. 83. (b) K.B.G.
Torssell, Nitrile Oxides, Nitrones and Nitronates in Organic
Synthesis, VCH, New York, 1988. (c) K.V. Gothelf, K.A.
Jørgensen, Chem. Rev. 98 (1998) 863.
[2] (a) S. Kobayashi, H. Ishitani, J. Am. Chem. Soc. 116 (1994)
4083. (b) S. Kobayashi, H. Ishitani, I. Hachiya, M. Araki,
Tetrahedron 50 (1994) 11623. (c) S. Kobayashi, M. Kawamura,
J. Am. Chem. Soc. 120 (1998) 5840.
2.67–2.72 (m, 2H, ArCH2), 2.94–2.99 (m, 2H, ArCH2),
4.04 (t, J=8.4 Hz, 2H), 4.33 (t, J=8.4 Hz, 2H),
4.49–4.57 (m, 2H), 7.07–7.21 (m, 16H), 7.76–7.79 (m,
2H), 8.31 (s, 2H), 12.08 (s, 2H, OH); IR (KBr): 2900,
1630, 1490, 1440, 1350, 1200, 1050, 950, 790, 750, 700
cm−1; Found: C, 79.17; H, 5.24; N, 4.33%. Anal. Calc.
for C40H32N2O4: C, 79.45; H, 5.33; N, 4.63%.