C O M M U N I C A T I O N S
Scheme 3. Outline of the Double Activation Reactiona
preparation of 1. We are grateful to Dr. Keiichi Ajito (Meiji Seika
Kaisha Ltd., (Tokyo, Japan)) for his kind communication. We also
appreciate the suggestions from the reviewers.
Supporting Information Available: Supplementary data, prepara-
tion of the starting materials, typical procedures, and characterization
data of the compounds 1a-m, 2a-m, 4, 5, 6, and 7. This material is
References
(1) Blanksby, S. J.; Ellison, G. B. Acc. Chem. Res. 2003, 36, 255.
(2) (a) Kiplinger, J. L.; Richmond, T. G.; Osterberg, C. E. Chem. ReV. 1994,
94, 373. (b) Burdeniuc, J.; Jedlicka, B.; Crabtree, R. H. Chem. Ber. 1997,
130, 145. (c) Richmond, T. G. In ActiVation of UnreactiVe Bonds and
Organic Synthesis; ; Murai, S., Eds.; Topics in Organometallic Chemistry,
Vol. 3; Springer: Berlin, 1999; p 243.
a [Nb] ) low valent niobium.
Table 2. Synthesis of Fluorenes
(3) (a) Terao, J.; Watabe, H.; Kambe, N. J. Am. Chem. Soc. 2005, 127, 3656.
(b) Terao, J.; Ikumi, A.; Kuniyasu, H.; Kambe, N. J. Am. Chem. Soc.
2003, 125, 5646. (c) Kim, Y. M.; Yu, S. J. Am. Chem. Soc. 2003, 125,
1696. (d) Steffen, A.; Sladek, M. I.; Braun, T.; Neumann, B.; Stammler,
H.-G. Organometallics 2005, 24, 4057. (e) Saeki, T.; Takashima, Y.;
Tamao, K. Synlett 2005, 1771.
(4) (a) Scott, V. J.; Celenligil-Cetin, R.; Ozerov, O. V. J. Am. Chem. Soc.
2005, 127, 2852. (b) Amii, H.; Hatamoto, Y.; Seo, M.; Uneyama, K. J.
Org. Chem. 2001, 66, 7216. (c) Saboureau, C.; Troupel, M.; Sibille, S.;
Pe´richon, J. J. Chem. Soc., Chem. Commun. 1989, 1138. (d) Clavel, P.;
Le´ger-Lambert, M.-P.; Biran, C.; Serein-Spirau, F.; Bordeau, M.; Roques,
N.; Marzouk, H. Synthesis 1999, 829.
(5) (a) Fuchibe, K.; Akiyama, T. Synlett 2004, 1282. See also; (b) Sato, M.;
Oshima, K. Chem. Lett. 1982, 157.
(6) J. H. Teuben and co-workers reported 2-fluorobiphenyl was formed from
fluorobenzene and (Cp*2YH)2: Booij, M.; Deelman, B.-J.; Duchateau,
R.; Postma, D. S.; Meetsma, A.; Teuben, J. H. Organometallics 1993,
12, 3531.
(7) We observed the formation of the niobium mirror inside of the reaction
vessel when stoichiometric amount of NbCl5 was employed (e.g. in entry
1, Table 1). Kost, M. E.; Golovanova, A. I. Zh. Neorg. Khim. 1977, 22,
977.
(8) (a) Paleta, O. In Organo-Fluorine Compounds; Baasner, B., Hagemann,
H., Tatlow, J. C., Eds.; Methods of Organic Chemistry, Vol. E 10b/Part
2; Houben-Weyl: Stuttgart, 2000; p 306. (b) Alonso, F.; Beletskaya, I.
P.; Yus, M. Chem. ReV. 2002, 102, 4009. (c) Jones, W. D. J. Chem. Soc.,
Dalton Trans. 2003, 3991. (d) Kraft, B. M.; Lachicotte, R. J.; Jones, W.
D. J. Am. Chem. Soc. 2001, 123, 10973. (e) Vela, J.; Smith, J. M.; Yu,
Y.; Ketterer, N. A.; Flaschenriem, C. J.; Lachicotte, R. J.; Holland, P. L.
J. Am. Chem. Soc. 2005, 127, 7857. (f) Aizenberg, M.; Milstein, D. Science
1994, 265, 359; ref 4a. See ref 2, also.
(9) Difluorobenzylic radical species may not be involved because this reaction
was not inhibited by an equimolar amount of 9,10-dihydroanthracene
(NbCl5 (0.3), LiAlH4 (6) over 1 h, dioxane, reflux, 4 h, 60% of 2a and
3% of 3a). Electrophilic aromatic substitution might not be operative
because considerable amounts of m-tolylated 5 and 6 were obtained
(Scheme 2).
(10) (a) Catellani, M. Synlett 2003, 298. (b) Dyker, G. Chem. Ber. 1997, 130,
1567. Another mechanism such as σ-bond metathesis is also conceivable.
(11) (a) Sulsky, R.; Robl, J. A.; Biller, S. A.; Harrity, T. W.; Wetterau, J.;
Connolly, F.; Jolibois, K.; Kunselman, L. Bioorg. Med. Chem. Lett. 2004,
14, 5067. (b) Lyakhov, S. A.; Lyakhova, E. A.; Karpenko, A. S.; Mal’tsev,
G. V.; Vel’cheva, I. V.; Litvinova, L. A.; Lebedyuk, M. N.; Khorokhorina,
G. A.; Fedchuk, V. P. Pharm. Chem. J. 2004, 38, 128. (c) Morgan, L. R.;
Thangaraj, K.; LeBlanc, B.; Rodgers, A.; Wolford, L. T.; Hooper, C. L.;
Fan, D.; Jursic, B. S. J. Med. Chem. 2003, 46, 4552. (d) Pan, H.-L.;
Fletcher, T. L. J. Med. Chem. 1965, 8, 491. (e) Miller, E. C. Cancer Res.
1978, 38, 1479. (f) Robillard, B.; Lhomme, M. F.; Lhomme, J. Tetrahedron
Lett. 1985, 26, 2659. (g) Doisy, R.; Tang, M.-S. Biochemistry 1995, 34,
4358. (h) Fletcher, T. L.; Namkung, M. J.; Pan, H.-L. J. Med. Chem.
1967, 10, 936. (i) Scherf, U.; List, E. J. W. AdV. Mater. 2002, 14, 477. (j)
Ohmori, Y.; Uchida, M.; Muro, K.; Yoshino, K. Jpn. J. Appl. Phys. 1991,
30, L1941. 1. See also; (k) Rathore, R.; Chebny, V. J.; Abdelwahed, S.
H. J. Am. Chem. Soc. 2005, 127, 8012. (l) Wang, Z.; Xing, Y.; Shao, H.;
Lu, P.; Weber, W. P. Org. Lett. 2005, 7, 87. (m) Saikawa, Y.; Hashimoto,
K.; Nakata, M.; Yoshihara, M.; Nagai, K.; Ida, M.; Komiya, T. Nature
2004, 429, 363.
a NbCl5 0.1 mol. amt., LiAlH4 5 mol. amt. b NbCl5 1.0 mol. amt., LiAlH4
0.1 mol. amt.
Fluorene is the core structure of (naturally occurring) potent
molecules11 such as the MTP inhibitor,11a interferon inducers,11b
antitumor compounds,11c,d and on the contrary, carcinogens.11e-h
Fluorenes in polymer form have also attracted much attention as
molecular devices for blue-light-emitting materials.11i, j The niobium-
mediated cyclization described here might contribute to these areas
of research by supplying these fluorene-containing materials.12
In summary, we have developed a double C-F/C-H bond
activation protocol for o-arylated trifluorotoluenes. By means of
this low-valent niobium-mediated system, a variety of substituted
fluorenes were synthesized in good yields.
(12) Other reports on fluorene synthesis; (a) Ferraris, D.; Cox, C.; Anand, R.;
Lectka, T. J. Am. Chem. Soc. 1997, 119, 4319. (b) Olah, G. A.; Mathew,
T.; Farnia, M.; Prakash, G. K. S. Synlett 1999, 1067. (c) Ohwada, T.;
Suzuki, T.; Shudo, K. J. Am. Chem. Soc. 1998, 120, 4629. (d) Campo,
M. A.; Larock, R. C. J. Org. Chem. 2002, 67, 5616.
Acknowledgment. We appreciate Asahi Glass Co., Ltd. (Tokyo,
Japan) for supplying us with 2-bromo-R,R,R-trifluorotoluene for
JA0565323
9
J. AM. CHEM. SOC. VOL. 128, NO. 5, 2006 1435