A R T I C L E S
Roquet et al.
tectures combining donor and acceptor blocks,12 or conjugated
polymers with reduced band gaps.13
isotropic optical and charge-transport properties. Star-shaped
molecules consisting of a TPA core substituted by oligophe-
nylenes, 2-phenylthiophene, or fluorene have been described,1
and the first examples of OFETs based on materials containing
8-20
Organic semiconductors based on low-dimensional π-con-
jugated systems such as oligothiophenes are known to present
1
20
highly anisotropic electronic properties. This point has been
the TPA core have been recently reported. However, the use
clearly demonstrated on OFETs based on sublimed thin films
of oligothiophenes for which the highest hole mobility is
observed when the molecules are oriented perpendicularly to
the substrate.1 However, such an orientation is detrimental
for solar cells because it strongly reduces the absorption cross
section for the incident light as well as the efficiency of charge
transport through the cell thickness.1 A first solution to this
problem consists of using as active materials two-dimensional
conjugated systems prone to adopt an horizontal orientation on
of TPA-based materials for photovoltaic conversion has been
scarcely considered. TPA-based starburst molecules containing
nitro or dimesitylboryl acceptor groups have been synthesized.18
When used as donors in bilayer heterojunctions, these com-
pounds led to conversion efficiencies of 0.4 and 0.1% under
monochromatic irradiation at 440 nm where the molecules
,14
5,16
18
mainly absorb.
We now report the synthesis of hybrid donor compounds
consisting of various combinations of a TPA core derivatized
with dithienylethylene π-conjugated chains and electron-accep-
tor groups (Chart 1). These systems have been designed in order
to (i) take advantage of the hole-transport properties of TPA
3,4,10
the surface, for example phthalocyanines,
or more recently
1
1a
hexabenzocoronenes,
or planarized star-shaped oligothio-
phenes.1
1b,16
1
8-20
21
Another possible solution would consist in the development
of organic semiconductors in which the anisotropy of electronic
properties (and hence the need to control molecular orientation)
would be reduced by an increase of the dimensionality of the
elemental unit. As a first step in this direction, we have recently
shown that three-dimensional (3D) conjugated architectures in
which four oligothiophene chains are attached to a silicon node
lead to promising results as donors in bulk heterojunction solar
derivatives
and oligothienylenevinylenes, (ii) extend the
absorption spectrum of the donor toward longer wavelengths
1
3
by an intramolecular charge transfer, and (iii) confer a high
oxidation potential on the donor and thus preserve a high open-
2
2
circuit voltage for the resulting solar cells.
The electronic properties of the new compounds have been
analyzed by UV-vis absorption spectroscopy, fluorescence
emission spectroscopy, and cyclic voltammetry. The potentiali-
ties of these materials for photovoltaic conversion have been
evaluated on prototype bulk and bilayer heterojunction solar
cells using fullerene C60 derivatives as the acceptor, and the
results are discussed in relation to the chemical structure of the
donor.
1
7
cells.
Organic glasses derived from triphenylamine (TPA) deriva-
1
8
tives have been widely investigated for almost two decades.
Considerable effort in synthetic chemistry, in particular by
Shirota and co-workers, has led to the development of many
classes of TPA-based compounds as hole-transporting or
electroluminescent materials.18 Owing to the noncoplanarity of
the three phenyl substituents, TPA derivatives can be view as
Results and Discussion
3
D systems. The combination of TPA with linear π-conjugated
Synthesis. The synthesis of the target molecules is depicted
in Scheme 1. All final compounds derive from the key
trialdehyde 8 obtained in two steps from commercially available
tribromotriphenylamine 12. A Stille coupling between tribu-
tyltinthiophene 11 and compound 12 gave tris[4-(2-thienyl)-
systems could be expected to lead to amorphous materials with
(
11) (a) Schmidt-Mende, L.; Fechtenk o¨ tter, A.; M u¨ llen, K.; Moons, E.; Friend,
R. H.; MacKenzie, J. D. Science 2001, 293, 1119. (b) Nicolas, Y.;
Blanchard, P.; Levillain, E.; Roncali, J. Org. Lett. 2004, 6, 273. (c) Mason,
C. R.; Skabara, P. J.; Cupertino, D.; Schofield, J.; Meghdadi, F.; Ebner,
B.; Sariciftci, N. S. J. Mater. Chem. 2005, 15, 1446. (d) Jørgensen, M.;
Krebs, F. C. J. Org. Chem. 2004, 69, 6688. (e) Zheng, L.; Zhou, Q.; Deng,
X.; Yuan, M.; Yu, G.; Cao, Y. J. Phys. Chem. B 2004, 108, 11921.
12) (a) Segura, J. L.; Martin, N.; Guldi, D. M. Chem. Soc. ReV. 2005, 34, 31.
19b,23
phenyl]amine
9 in 85% yield. Vilsmeier-Hack formylation
of compound 9 led to tris[4-(5-formyl-2-thienyl)phenyl]amine
8 in 90% yield.
(
(
b) Roncali, J. Chem. Soc. ReV. 2005, 34, 483. (c) Cravino, A.; Sariciftci,
The use of different experimental conditions for the Wittig-
Horner olefination of trialdehyde 8 with phosphonate 1024 led
to compounds 7, 6, and 1 corresponding to the mono-, bis-,
and tris-olefination of trialdehyde 8. Thus, the use of 5 equiv
of phosphonate 10 gave after 1 h reaction compound 1 in 70%
yield. The use of 2.5 equiv of 10 and 12 h reaction led to
compounds 1 and 7 in 50 and 20% yield, respectively. Finally,
N. S. J. Mater. Chem. 2002, 12, 1931. (d) Cremer, J.; Mena-Osteritz, E.;
Pshierer, M. G.; M u¨ llen, K.; B a¨ uerle, P. Org. Biomol. Chem. 2005, 3, 985.
(
e) Cremer, J.; B a¨ uerle, P. Eur. J. Org. Chem. 2005, 3715. (f) Neuteboom,
E. E.; Meskers, S. C. J.; van Hal, P.; van Duren, J. K. J.; Meijer, E. W.;
Janssen, R. A. J.; Dupin, H.; Pourtois, G.; Cornil, J.; Lazzaroni, R.; Br e´ das,
J.-L.; Beljonne, D. J. Am. Chem. Soc. 2003, 125, 8625. (g) Huang, C.-H.;
MacClenaghan, N. D.; Kuhn, A.; Hofstraat, J.; Bassani, D. M. Org. Lett.
2
005, 7, 3409. (h) Apperloo, J. J.; Martineau, C.; van Hal, P.; Roncali, J.;
Janssen, R. A. J. J. Phys. Chem. A 2002, 106, 21. (i) van Hal, P.; Beckers,
E. H. A.; Meskers, S. C. J.; Janssen, R. A. J.; Jousselme, B.; Blanchard,
P.; Roncali, J. Chem.sEur. J. 2002, 8, 5415.
2
equiv of phosphonate 10 and 15 h reaction led to a mixture
(
13) (a) Roncali, J. Chem. ReV. 1997, 97, 173. (b) Winder, C.; Sariciftci, N. S.
J. Mater. Chem. 2004, 14, 1077. (c) Vangeneugden, D. L.; Vanderzande,
D. J. M.; Salbeck, J.; van Hal, P. A.; Janssen, R. A. J.; Hummelen, J. C.;
Brabec, C. J.; Shaheen, S. E.; Sariciftci, N. S. J. Phys. Chem. B 2001, 105,
(19) (a) Nishimura, K.; Kobata, T.; Inada, H.; Shirota, Y. J. Mater. Chem. 1991,
1, 897. (b) Ohishi, H.; Tanaka, M.; Kegeyama, H.; Shirota, Y. Chem. Lett.
2004, 33, 1266.
(20) (a) Saragi, T. P. I.; Fuhrmann-Lieker, T.; Salbeck, J. Synth. Met. 2005,
148, 267. (b) Sonntag, M.; Kreger, K.; Hanft, D.; Strohriegl, P.; Setayesh,
S.; de Leeuw, D. Chem. Mater. 2005, 17, 3031.
(21) (a) Roncali, J. Acc. Chem. Res. 2000, 33, 147. (b) Videlot, C.; Ackermann,
J.; Blanchard, P.; Raimundo, J.-M.; Fr e` re, P.; Allain, M.; de Bettignies,
R.; Levillain, E.; Roncali, J. AdV. Mater. 2003, 15, 306.
(22) (a) Brabec, C. J.; Cravino, A.; Meissner, D.; Sariciftci, N. S.; Fromhertz,
T.; Rispens, M. T.; Sanchess, L.; Hummelen, J. C. AdV. Funct. Mater.
2001, 11, 374. (b) Gadisa, A.; Svensson, M.; Andersson, M. R.; Ingan a¨ s,
O. Appl. Phys. Lett. 2004, 84, 1609.
1
1106. (d) Brabec, C. J.; Winder, C.; Sariciftci, N. S. Hummelen, J. C.;
Dhanabalan, A.; van Hal, P. A.; Janssen, R. A. J. AdV. Funct. Mater. 2002,
1
2, 709. (e) Zhang, F.; Perzon, E.; Wang, X.; Mamo, W.; Andersson, M.
R.; Ingan a¨ s, O. AdV. Funct. Mater. 2005, 15, 745.
(
(
(
(
(
14) Garnier, F.; Yassar, A.; Hajlaoui, R.; Horowitz, G.; Deloffre, F.; Servet,
B.; Ries, S.; Alnot, P. J. Am. Chem. Soc. 1993, 115, 8716.
15) Videlot, C.; El Kassmi, A.; Fichou, D. Sol. Energy Mater. Sol. Cells 2000,
6
3, 69.
16) de Bettignies, R.; Nicolas, Y.; Blanchard, P.; Levillain, E.; Nunzi, J.-M.;
Roncali, J. AdV. Mater. 2003, 15, 1939.
17) Roncali, J.; Fr e` re, P.; Blanchard, P.; de Bettignies, R.; Turbiez, M.; Roquet,
S.; Leriche, P.; Nicolas, Y. Thin Solid Films, in press.
(23) Yamamoto, K.; Higushi, M.; Ushida, K.; Kojima, Y. Macromolecules 2002,
35, 5782.
(24) Seeboth, H.; Andeae, S. Z. Chem. 1977, 16, 399.
18) (a) Shirota, Y. J. Mater. Chem. 2000, 10, 1. (b) Shirota, Y. J. Mater. Chem.
2
005, 15, 75.
3460 J. AM. CHEM. SOC.
9
VOL. 128, NO. 10, 2006