5068 Journal of Medicinal Chemistry, 2007, Vol. 50, No. 21
Wang et al.
(9) Dairkee, S. H.; Hackett, A. J. Differential retention of rhodamine
123 by breast carcinoma and normal human mammary tissue. Breast
Cancer Res. Treat. 1991, 18, 57-61.
(10) Gottlieb, E.; Thompson, C. B. Targeting the mitochondria to enhance
tumor suppression. Methods Mol. Biol. 2003, 223, 543-554.
(11) Mannella, C. A. The relevance of mitochondrial membrane topology
to mitochondrial function. Biochim. Biophys. Acta 2006, 1762, 140-
147.
(12) Ross, M. F.; Kelso, G. F.; Blaikie, F. H.; James, A. M.; Cocheme,
H. M.; Filipovska, A.; Da Ros, T. D.; Hurd, T. R.; Smith, R. A. J.;
Murphy, M. P. Lipophilic triphenylphosphonium cations as tools in
mitochondrial bioenergetics and free radical biology. Biochemistry
(Moscow) 2005, 70, 222-230.
(13) Jakobs, S. High resolution imaging of live mitochondria. Biochim.
Biophys. Acta 2006, 1763, 561-575.
(14) Lichtshtein, D.; Kaback, H. R.; Blume, A. J. Use of a lipophilic cation
for determination of membrane potential in neuroblastomas-glioma
hybrid cell suspensions. Proc. Natl. Acad. Sci. U.S.A. 1979, 76, 650-
654.
(15) Hockings, P. D.; Rogers, P. J. The measurement of transmembrane
electric potential with lipophilic cations. Biochim. Biophys. Acta 1996,
1282, 101-106.
(16) Huang, S. G. Development of a high throughput screening assay for
mitochondrial membrane potential in living cells. J. Biomol. Screen-
ing 2002, 7, 383-389.
(17) Herman, L. W.; Sharma, V.; Kronauge, J. F.; Barbarics, E.; Herman,
L. A.; Piwnica-Worms, D. Novel hexakis(areneisonitrile)technetium-
(I) complexes as radioligands targeted to the multidrug resistance
P-glycoprotein. J. Med. Chem. 1995, 38, 2955-2963.
(18) Agrawal, M.; Abraham, J.; Balis, F. M.; Edgerly, M.; Stein, W. D.;
Bates, S.; Fojo, T.; Chen, C. C. Increased 99mTc-Sestamibi accumula-
tion in normal liver and drug resistant-tumors after the administration
of the glycoprotein inhibitor, XR9576. Clin. Cancer Res. 2003, 9,
650-656.
(19) Luker, G. D.; Francisco, P. M.; Dobkin, J.; Piwbica-Worms, D.
Modulation of the multidrug resistance P-glycoprotein: Detection
with technetium-99m sestamibi in vivo. J. Nucl. Med. 1997, 38, 369-
372.
very attractive radiotracers for tumor radiotherapy because they
will have more opportunities to interact intracellular biomol-
ecules, such as DNA molecules, than the extracellular receptor-
based radiotracers. They may also produce more “intracellular”
free radicals, which are very reactive toward many biomolecules
inside mitochondria of tumor cells. However, in the absence of
experimental data, these assumptions remain largely speculation.
Conclusion
In this study, we discovered a new class of PET radiotracers
with very high tumor selectivity. Results from the in vitro
cellular and mitochondrial uptake kinetics clearly demonstrate
that the 64Cu-labeled TPP cations are able to across the plasma
and mitochondrial membranes and localize in mitochondria of
tumor cells. The most striking difference between 64Cu-L1,
64Cu-L2, 64Cu-L3 and 99mTc-Sestamibi is their tumor/heart and
heart/muscle ratios. The heart uptake for 64Cu-L1, 64Cu-L2, and
64Cu-L3 is much lower than that of 99mTc-Sestamibi in the same
animal model. The tumor selectivity of 64Cu-L1, 64Cu-L2, and
64Cu-L3 is unprecedented among all the cationic radiotracers
reported in literature. While their high tumor uptake is due to
the enhanced negative mitochondrial transmembrane potentials
in glioma cells, their unprecedented high tumor selectivity is
attributed to their low lipophilicity (log P ) -2.03 to -2.67).
The results from this study strongly suggest that the 64Cu-labeled
TPP/TPA cations are very selective tumor-imaging radiotracers,
and can provide the information of mitochondrial bioenergetic
function by monitoring mitochondrial potential in tumors.
Acknowledgment. Authors would like to thank Dr. Sulma
I. Muhammed, the Director of Purdue Cancer Center Drug
Discovery Shared Resource, Purdue University, for her as-
sistance with the tumor-bearing animal model. This work is
supported, in part, by research grants: R01 CA115883 A2 (S.L.)
from National Cancer Institute (NCI), BCTR0503947 (S.L.)
from Susan G. Komen Breast Cancer Foundation, AHA0555659Z
(S.L.) from the Greater Midwest Affiliate of American Heart
Association, R21 EB003419-02 (S.L.) from National Institute
of Biomedical Imaging and Bioengineering (NIBIB), and R21
HL083961-01 from National Heart, Lung, and Blood Institute
(NHLBI).
(20) Liu, Z. L.; Stevenson, G. D.; Barrett, H. H.; Kastis, G. A.; Bettan,
M.; Furenlid, L. R.; Wilson, D. W.; Woolfenden, J. M. Imaging
recognition of multidrug resistance in human breast tumors using
99mTc-labeled monocationic agents and a high-resolution stationary
SPECT system. Nucl. Med. Biol. 2004, 31, 53-65.
(21) Liu, Z. L.; Stevenson, G. D.; Barrett, H. H.; Furenlid, L. R.; Wilson,
D. W.; Kastis, G. A.; Bettan, M.; Woolfenden, J. M. Imaging
recognition of inhibition of multidrug resistance in human breast
cancer xenografts using 99mTc-labeled sestamibi and tetrofosmin.
Nucl. Med. Biol. 2005, 32, 573-583.
(22) Sharma, V.; Piwnica-Worms, D. Metal complexes for therapy and
diagnosis of drug resistance. Chem. ReV. 1999, 99, 2545-2560.
(23) Muzzammil, T.; Ballinger, J. R.; Moore, M. J. 99mTc-sestamibi
imaging of inhibition of the multidrug resistance transporter in a
mouse xenograft model of human breast cancer. Nucl. Med. Commun.
1999, 20, 115-122.
(24) Sharma, V. Radiopharmaceuticals for assessment of multidrug
resistance P-glycoprotein-mediated drug transport activity. Biocon-
jugate Chem. 2004, 15, 1464-1474.
(25) Vaidyanathan, G.; Zalutsky, M. R. Imaging drug resistance with
radiolabeled molecules. Curr. Pharm. Des. 2004, 10, 2965-2979.
(26) Woo, D. V. Process of radioimaging the myocardium of mammals
utilizing radiolabeled lipophilic cations. US Patent 4,446,123, 1984.
(27) Srivastava, P. C.; Knapp, F. K. [(E)-1-[123I]Iodo-penten-5-yl]triph-
enylphosphonium iodide: convenient preparation of a potentially
useful myocardial perfusion agent. J. Med. Chem. 1984, 27, 978-
981.
References
(1) Kroemer, G.; Dallaporta, B.; Resche-Rigon, M. The mitochondrial
death/ life regulator in apoptosis and necrosis. Annu. ReV. Physiol.
1998, 60, 619-642.
(2) Modica-Napolitano, J. S.; Aprille, J. R. Delocalized lipophilic cations
selectively target the mitochondria of carcinoma cells. AdV. Drug
DeliVery ReV. 2001, 49, 63-70.
(3) Duchen, M. R. Mitochondria in health and disease: perspectives on
a new mitochondrial biology. Mol. Aspects Med. 2004, 25, 365-
451.
(28) Srivastava, P. C.; Hay, H. G.; Knapp, F. K. Effects of alkyl and aryl
substitution on the myocardial specificity of radioiodinated phos-
phonium, arsinium, and ammonium cations. J. Med. Chem. 1985,
28, 901-904.
(29) Krause, B. J.; Szabo, Z.; Becker, L. C.; Dannals, R. F.; Scheffel, U.;
Seki, C.; Ravert, H. T.; Dipaola, A. F., Jr.; Wagner, H. N., Jr.
Myocardial perfusion with [11C] triphenyl phosphonium: measure-
ments of the extraction fraction and myocardial uptake. J. Nucl. Biol.
Med. 1994, 38, 521-526.
(30) Madar, I.; Anderson, J. H.; Szabo, Z.; Scheffel, U.; Kao, P. F.; Ravert,
H. T.; Dannals, R. F. Enhanced uptake of [11C]TPMP in canine brain
tumor: a PET study. J. Nucl. Med. 1999, 40, 1180-1185.
(31) Madar, I.; Weiss, L.; Izbicki, G. Preferential accumulation of 3H-
tetraphenylphosphonium in non-small cell lung carcinoma in mice:
comparison with 99mTc-MIBI. J. Nucl. Med. 2002, 43, 234-238.
(32) Ravert, H. T.; Madar, I.; Dannals, R. F. Radiosynthesis 3-[18F]-
fluoropropyl and 4-[18F]fluorobenzyl triarylphosphonium ions. J.
Labelled Compd. Radiopharm. 2004, 47, 469-476.
(4) Modica-Napolitano, J. S.; Singh, K. K. Mitochondria as targets for
detection and treatment of cancer. Expert ReViews in Molecular
(short code: txt001ksb).
(5) Johnson, L. V.; Walsh, M. L.; Chen, L. B. Localization of
mitochondria in living cells with rhodamine 123. Proc. Natl. Acad.
Sci. U.S.A. 1980, 77, 990-994.
(6) Summerhayes, I. C.; Lampidis, T. J.; Bernal, S. D.; Nadakavukaren,
J. J.; Nadakavukaren, K. K.; Shepard, E. L.; Chen, L. B. Unusual
retention of rhodamine 123 by mitochondria in muscle and carcinoma
cells. Proc. Natl. Acad. Sci. U.S.A. 1982, 79, 5292-5296.
(7) Modica-Napolitano, J. S.; Aprille, J. R. Basis for the selective
cytotoxicity of rhodamine 123. Cancer Res. 1987, 47, 4361-4365.
(8) Davis, S.; Weiss, M. J.; Wong, J. R.; Lampidis, T. J.; Chen, L. B.
Mitochondrial and plasma membrane potentials cause unusual
accumulation and retention of rhodamine 123 by human breast
adenocarcinoma-derived MCF-7 cells. J. Biol. Chem. 1985, 260,
3844-3850.